目次

第5章	貯留層等総合評価	5-1
5.1 萌5	別層地質構造解釈の更新	5-1
5.1.1	調査対象範囲	5-1
5.1.2	坑井対比(IW-2)	5-3
5.1.3	構造解釈の更新	5-5
5.1.4	深度変換	5-8
5.1.5	差分記録に関する考察	5-11
5.2 地質	質モデリング	5-14
5.2.1	地質モデリングの概要	5-14
5.2.2	地質モデルの更新	5-15
5.2.3	地質モデル更新結果	5-19
5.3 苫/	小牧 IW-2 圧入圧力の予実績比較	5-21
5.3.1	予実績比較	5-22
5.3.2	IW-2 坑底圧力の予実績比較	5-23
5.3.3	OB-2 坑底圧力上昇値の予実績比較	5-25
5.3.4	弾性波探査との比較	5-26
5.4 苫/	小牧 IW-2 フォールオフの解析	5-33
5.4.1	FOA一覧	5-34
5.4.2	FOA に用いた密閉坑底圧カデータ	5-36
5.4.3	圧カデリバティブに関する考察	5-37
5.5 IW-	-2 長期挙動予測シミュレーション貯留層モデルの更新	5-45
5.5.1	使用モデル	5-45
5.5.2	岩相分布の作成	5-46
5.5.3	パラメータの設定	5-46
5.5.4	ヒストリーマッチングに向けた予備検討	5-55
5.5.5	まとめ	5-64
5.6 地位	と学反応に対する検討(流動一地化学連成シミュレーション)	5-65
5.6.1	動向調査概要	5-65
5.6.2	流動一地化学連成シミュレーションの設定法の現状調査	5-66
5.6.3	地化学連成シミュレーションの設定法の改善(案)	5-76
5.6.4	CCS における流動一地化学連成シミュレーションのあり方に関する提言	5-101

5.6.5	まとめ	5-102
5.6.6	今後の課題	5-103

第5章 貯留層等総合評価

5.1 萌別層地質構造解釈の更新

5.1.1 調査対象範囲

(1) 調査対象範囲概要

2020年度貯留層総合評価では、2019年度の繰り返し弾性波探査で取得した第4回モニ ター調査記録を用いて地質構造解釈の更新を実施した。今回は主に萌別層圧入井 IW-2 (以下、「IW-2」と称する。)近傍の萌別層貯留層の更新を中心に、図 5.1-1 に示す既存 の地質モデルの構造図を更新した。

図 5.1-1 調査対象範囲

(2) 2019 年度弾性波探査調査データ概要

調査対象範囲では、2009~2010年度の三次元探査弾性波探査データ取得以降に複数回 の弾性波探査を実施している。本構造解釈更新作業で主に使用したデータは、2019年度に 実施した差分解析検討結果である。

また、2009年度に取得した三次元ベースライン調査記録について、2017年度の差分解 析時に更新した結果を「既存ベースライン記録」、2019年度の差分解析時に新たに取得し たエリアを追加して更新した結果を「2019年度ベースライン記録」とそれぞれ称する。

なお、本章においては、差分記録は各年度のモニター調査記録と 2019 年度ベースライン記録の差分を示す。

2019年度ベースライン記録と各年度の探査記録を図 5.1-2 に、各年度の差分記録の比較 を図 5.1-3 に示す。図 5.1-2 では、2019年度ベースライン記録と比べて各年度の弾性波探 査記録における貯留層内の反射波振幅が年により変わっているのが観察できる。図 5.1-3 の差分記録は、各年度の繰り返し探査記録と 2019年度ベースライン記録の差分を取った ものであるがこちらも同様に年ごとに変化があることが観察できる。

地質構造解釈の更新作業には、2019年度ベースライン記録を使用した。

図 5.1-2 ベースライン記録と各年の繰り返し探査記録

図 5.1-3 各年の差分記録

5.1.2 坑井対比(IW-2)

図 5.1-3 の(3)に示した差分記録(2019 年度)を用いて再解釈をするにあたり、改めて坑 井対比を実施した。図 5.1-4 に示すように、対比したのは IW-2 の検層記録と 2019 年度 ベースライン記録である。IW-2 には密度検層(RHOB)が存在しないため、合成弾性波 記録は音波検層(DT)のみを用いて作成した。深度-時間関係は、滝ノ上層調査井

(CCS-1) のチェックショットを使用した。

対比する坑井マーカーとホライズンは、浅部から萌別層泥岩基底、SB-3、萌別層基底お よび SB-2 である。合成弾性波記録と弾性波探査記録ともに、青(ピーク)が正の値(音 響インピーダンスが増加する境界面からの反射波を示す)、赤(トラフ)が負の値を示 す。SB-3 から SB-2 までの区間では、合成弾性波記録と弾性波探査記録の波形が良く対比 できている。貯留層は萌別層泥岩基底と SB-3 の間であるが、萌別層泥岩基底の対比は若 干のずれはあるものの、貯留層内の 2 枚のピークは良好に対比できる。

以下、各ホライズンの対比をまとめる。

- 前別層泥岩基底(983 mTVDSS(海水面からの垂直深度)/997 ms): ピークそのものではなく、トラフ(赤)からピーク(青)のゼロクロス付近
- 2) SB-3 (1,018 mTVDSS/1,028 ms) : トラフ
- 3) 萌別層基底(1,086 mTVDSS/1,086 ms): トラフからピークのゼロクロス付近
- 4) SB-2 (1,144 mTVDSS/1,134 ms) : ピーク

図 5.1-4 坑井一弾性波探査記録対比

次に、坑井対比結果をもとに、CO2の圧入位置を弾性波探査断面上で対比した。図 5.1-5 には、左からインデックス図、ベースライン記録、2019 年度探査記録およびその差 分記録の断面を示す。各断面は、インデックス図に示すように圧入位置近くの東西断面で あり、中央部に IW-2 の坑跡を示す。

マゼンタ色のホライズンが萌別層泥岩基底であり、緑色の SB-3 ホライズンまでの区間 が萌別層貯留層である。各断面において貯留層内の坑跡上に赤く右に振れるカーブが表示 されているが、これがシミュレーション結果から推定される深度方向の CO₂ 圧入量を示し ている。これを見ると、CO₂ 圧入区間の中でも圧入レートが高かった区間(998.4~ 1,004.3 m TVDSS)は、萌別層泥岩基底直下ではなく貯留層の中部に対比される。注目さ れるのは、2019 モニター記録の黄色破線で囲んだ場所で、ベースライン記録にはなかった 青いピークの反射波が現れている。ここは、差分記録では青(正)の振幅異常として表れ ている。

これらの現象は、以下のように解釈した。すなわち、CO2圧入により砂層の速度が低下 し、下位の礫層とのインピーダンス差が増大したことにより、ベースライン記録にはな かった青いピークの反射波が出現した。差分記録の正の振幅異常(1,010~1,025 ms)

5-4

は、この反射波の出現によるものであるという解釈である。

また、差分記録では萌別層泥岩基底付近およびその上位で負(赤トラフ)の振幅異常が 観測されている。これは CO₂ 圧入仕上げ区間の上部が萌別層泥岩中にあり、萌別層泥岩基 底直下から上位の泥岩またはシルト岩と解釈される深度(977.6~986.1 m TVDSS) にも 圧入レートは低いものの CO₂ が圧入されていることから、この区間の速度が低下したこと に関連すると考えられる。

一方で、差分記録に見られる SB-3 ホライズンよりも下位の繰り返しの強振幅異常は、 CO₂圧入では説明が困難な現象である。データ処理による偽像の影響が考えられるが、今 後、検討を継続する。

図 5.1-5 弾性波探査記録と圧入位置

5.1.3 構造解釈の更新

2019年度ベースライン記録を詳細に確認したところ、萌別層泥岩基底ホライズンやSB-3ホライズンは、既存三次元ベースライン解釈と一致しない個所があることが判明した。 図 5.1・6 は、2019年度ベースライン記録上に2020年度再解釈ホライズン(実線)と2018 年度に実施した既存解釈ホライズン(破線)を重ねて表示したものである。図 5.1・6の左 図は、萌別層泥岩基底ホライズン(2018年度解釈)の時間構造図であり、断面図上の破線 ホライズンに対応する。南北断面を見ると、2019年度ベースライン記録上の萌別層泥岩基 底ホライズン(マゼンタ)およびSB-3ホライズン(緑)の極隆部が2020年度再解釈(実 線)と既存の解釈(破線)で一致しない。

既存ベースライン記録と 2019 年度ベースライン記録を図 5.1-7 で比較する。両記録は反 射波の見え方自体が異なっているだけでなく、既存のベースライン記録は北方のデータが 存在しない。さらに、2018 年度に実施した解釈(既存解釈と称する。)では、北方エリア の解釈に解像度の劣る 2D 記録の解釈も使用して時間構造図が作成されていたことが判明 した。これらが、解釈ホライズンの違いの原因であると考えられる。即ち 2017 年以前の 探査記録は、北側のデータ範囲が 2019 年度探査記録よりも狭いため、CO2 圧入位置が断 面の端に近くなり、相対的にこの部分の記録品質が劣っている。測線端のスマイルノイズ

(時間マイグレーション処理による断面端に向かって跳ねあがる偽像)や浅部の記録品質 等を見ると、2019年度探査記録のほうがそれ以前の探査記録よりも北方のデータが追加さ れた分、品質が改善されて良好である。以上のことから、2020年度の総合評価では2019 年度ベースライン記録を用いて構造の再解釈をすることとした(2020年度再解釈と称す る。)。構造図を更新する対象ホライズンは、萌別層貯留層の上限および下限の2つのホ ライズン、すなわち萌別層泥岩基底ホライズンとSB-3ホライズンのみとした。それぞれ の更新前と更新後の時間構造図を図5.1-8および図5.1-9に示す。

図 5.1-6 既存解釈と 2020 年度再解釈の違い

図 5.1-7 既存ベースライン記録と 2019 年度ベースライン記録の比較

新旧 萌別層泥岩基底 (コンター間隔 1ms)

図 5.1-8 萌別層泥岩基底時間構造図

新旧 SB-3 (コンター間隔 2 ms)

図 5.1-9 SB-3 時間構造図

両ホライズンの時間構造図は地質モデル作成範囲全域で必要なため、基本的には既存解 釈の時間構造図のうち、2019 三次元ベースラインで新たに追加解釈された部分を置き換え た。

図 5.1-8 および図 5.1-9 に示すとおり、両ホライズンともに更新前は IW-2 と交差して西 北西に延びていたノーズ状の構造が、更新後は比高が小さくなり極隆部がやや南方へずれ ているのが分かる。また、更新前は北方の海岸線との間に溝状の沈降部ができていたが、 更新後はなくなった。

5.1.4 深度変換

深度変換は、図 5.1-10 に示すとおり、複数の坑井速度から各ホライズンまでの平均速度 図を作成し、時間構造図にかけ合わせて深度構造図に変換するフローである。各坑井の坑 井速度およびマーカー深度(表 5.1-1)ともに既存データを変更していないため、使用す る速度モデルに変更はない。時間構造図で変更された部分のみ、深度構造図で更新され る。図 5.1-11 に萌別層泥岩基底、図 5.1-12 に SB-3 ホライズンのそれぞれの平均速度図を 示す。図 5.1-13 に萌別層泥岩基底、図 5.1-14 に SB-3 ホライズンのそれぞれの新旧深度構 造図を示す。

図 5.1-10 深度変換の方法

マーカー名	CCS-2	CCS-1	IW-2	IW-1	OB-2	OB-3
萌別層泥岩層基底	1,064 m	1,061 m	983 m	972 m	972 m	598 m (欠如)
SB-3	1,087 m	1,086 m	1,018 m	985 m	990 m	598 m (欠如)

表 5.1-1 速度モデルに使用した坑井とマーカー深度(TVDSS)

図 5.1-11 萌別層泥岩基底の平均速度図

図 5.1-12 SB-3の平均速度図

旧深度構造図(2018年度) 新深度構造図(2020年度) 差分(2020年度-2018年度)

図 5.1-13 萌別層泥岩基底: 2018 年度と 2020 年度の新旧深度構造図の比較

図 5.1-14 SB-3: 2018 年度と 2020 年度の新旧深度構造図の比較

5.1.5 差分記録に関する考察

各年度の差分記録で見られる振幅異常の比較を図 5.1-15 に示す。振幅異常(赤色ほど強い)は、各年の差分記録から萌別層貯留層付近の RMS 振幅(萌別層泥岩基底の上位 12 ms~下位 36 ms の区間)を取ったものである。2017 年度(累計圧入量 6.5 万 t-CO₂) は IW-2 井周辺に同心円に近い形状で振幅異常が広がっているが、2018 年度(累計圧入量 21 万 t-CO₂)および 2019 年度(累計圧入量 30 万 t-CO₂)では振幅異常の広がりがさらに 坑井の東方に拡大しているのが分かる。一方、圧入量が増加しても、北方や西方にはほと んど振幅異常域は広がっていない。

また、2018年度と2019年度の差分記録を比べると、2019年度は圧入量が増加しているにも関わらず、両者の差分記録の異常域はほとんど変化していない。

図 5.1-15 各年度の差分記録(萌別層貯留層の RMS 振幅)

以下、差分記録の振幅異常域の広がりの方向性について考察する。

図 5.1-16 は差分記録の RMS 振幅図(図 5.1-15 と同じ)に、2018 年度に実施した既存 解釈と 2020 年度に再解釈した萌別層泥岩基底の新時間構造図のコンターを重ねた図であ る。左図の 2018 年度解釈の旧構造図の場合、構造極隆部は振幅異常域よりも北側で東西 方向に伸びている。振幅異常が圧入された CO₂の分布を示すものであれば、圧入された CO₂が浮力の影響を受けて構造傾斜の急な部分を通って北側の構造極隆部に移動すること が推測されるが、振幅異常域はそのようには分布していない。むしろ、コンターに沿って 東方に広がっているように見える。一方、新時間構造図の場合、構造極隆部が CO₂ 圧入地 点の近くに存在し、振幅異常の分布が北東から東へと構造の高いほうへ向かって移動して いるように見える。CO₂が浮力により構造の浅部方向に移動していると仮定すれば、それ を示す振幅異常域が構造下位に当たる北方、西方、南方には拡大していないことは説明可 能である。また地層の傾斜が緩やかであることを考慮すれば構造極隆部にはあまり達して いないことも説明は可能である。以上のことから、旧時間構造図よりも新時間構造図の方 が、差分記録の振幅異常分布と整合的であると考える。

旧時間構造図(既存解釈)

新時間構造図(2020年度再解釈)

図 5.1-16 萌別層泥岩基底新旧(時間)構造図と差分記録の振幅異常

次に、堆積ファシスと差分記録の振幅異常域の関係を図 5.1-17 に示す。CO₂ 圧入地点付 近の萌別層貯留層の推定堆積環境は、いずれも貯留層ファシスとなりうる Delta Plain お よび Delta Slope である。振幅異常域は Delta slope (upper) から Delta slope (流路近 傍)と解釈されており、振幅異常域にファシス変化は見られない。少なくとも、圧入地点 近傍は同じ Delta slope (upper) であり、貯留層性状の違いが振幅異常域を制限している ことを示す根拠はない。

苫小牧におけるCCUS大規模実証試験(2020年度) 日本CCS調査(株)

図 5.1-17 差分記録の振幅異常と堆積ファシス

次に、断層について、図 5.1-18 に 2019 年度ベースライン記録のバリアンス・スライス 図を示す。萌別層貯留層内の 1,020 ms の時間スライスである。2019 年度 ベースライン記 録のエリア中央部は白色で示されており、これは弾性波探査トレースの連続性が良好なこ とを示し、貯留層内には顕著な断層は認められない。よって、差分記録の振幅異常域が断 層により制限されることは想定していない。

図 5.1-18 バリアンス・時間スライス図(1,020 ms)

5.2 地質モデリング

5.2.1 地質モデリングの概要

萌別層貯留層の地質モデルは、2017年度に取得した繰り返し弾性波探査(第2回モニ ター調査)の苫小牧沖三次元弾性波探査記録に基づき2018年度に構造解析・堆積相解析 を行い、圧入開始前に作成されたモデルから大幅に拡張・更新している。

本検討では 5.1 節に示した、2019 年度に実施した第 4 回モニター調査データに基づく差 分解析検討結果を用いて、2018 年度に構築した地質モデルの更新を実施した。

地質モデルの更新作業は、図 5.2-1 で示すフローチャートに従い実施した。ワークフ ローは 2018 年度に構築したものを踏襲し、5.1 節で更新した深度構造図を取り込み、地質 モデルに反映させた。地質モデルの範囲は、2018 年度と同様であり、図 5.2-2 に示す約 10 km × 15 km の範囲とした。

[%]SIS: Sequential Indicator Simulation

図 5.2-1 地質モデリングフローチャート (赤枠が本検討の更新部分)

図 5.2-2 地質モデル範囲と坑井位置

5.2.2 地質モデルの更新

5.1節で述べたように、2020年度に実施した苫小牧 CCS 大規模実証試験「繰り返し弾 性波探査タイムラプス処理」の結果により、深度構造図の更新が必要であることが明らか となった。あわせて、2018年度地質モデルの堆積相解析ならびに断層解釈の結果の更新の 必要性の有無について確認した。さらに深度構造図の更新にともない地質モデルのグリッ ドモデルの変更が必要であるため、グリッドモデルの更新・最適化について検討した。

(1) 堆積相解析・断層解釈の確認

図 5.2-3 にラッピングパターンの比較を示す。ここでは、2018 年度の堆積相解析結果に 使用された弾性波探査断面(図 5.2-3「2018 年度スタディ」)と、本検討に使用する 2019 年度に取得した 2019 年度 繰り返し弾性波探査調査(図 5.2-3「2020 年度スタディ」)の 断面を比較し、弾性波探査記録のラッピングパターンを確認した。東西、南北、南西-北 東断面の三つの断面を確認した。貯留層層準である萌別層泥岩基底ホライズン

(Mo_Sh_Base) ~SB-3 ホライズンの間において、振幅が SB-3 にオンラップするパター

5-15

ンはいずれの断面でも共通しており、弾性波探査記録の取得年度の差は認められない。ま た、その上下の層準においても、オンラップパターンに明確な差は認められない。した がって、本検討で新たに使用した 2019 年度 繰り返し弾性波探査調査による堆積相解析の 更新は必要ないものと判断し、地質モデルの堆積相解析結果は 2018 年度の結果を適用す ることとした。

なお、断層解釈についても、2019 年度 繰り返し弾性波探査調査のデータ取得範囲にお いて、もともと 2018 年度地質モデルで断層が解釈されていないこと、および図 5.2-3 で示 すように 2019 年度の調査果から断層と解釈できる振幅の不連続性は認められないことか ら、断層解釈についても更新はしていない。

図4.2-1 弾性波探査記録のラッピングパターンの比較

注) 図中左列 2020 年度スタディは本検討で使用した弾性波探査記録、中列 2018 年度スタディは 2018 年 度地質モデルの堆積相解析に使用された弾性波探査記録を示す。右上図は堆積組相モデルの平面図を 示し、図中黄色線は断面線を示す。

図 5.2-3 弾性波探査記録のラッピングパターンの比較

(2) グリッドモデルの更新・最適化

深度構造図の更新にあわせてグリッドモデルの更新・最適化を行った。グリッドモデル の更新には、萌別層砂岩層上部に対して更新した深度構造図を用い、それ以外の層準につ いては 2018 年度モデルに使用されたものと同じ深度構造図を使用した。グリッドモデル の設定を、表 5.2-1 に示す。セルサイズならびにレイヤー数は 2018 年度モデルと同様であ る。

本検討におけるグリッドモデル作成では、5.4節のシミュレーションにて深度構造図以 外の影響を除くことを目的に、2018年度から2点の変更を行った。

一つは、レイヤーの等分方法を圧入層準に対しては等間隔の「Proportional」から任意の比率の「Fractional」に変更した。2018年度モデルでは萌別層砂岩層上部

(MO_SH_Base_TS_III~SB·III) のゾーンを Proportional で 6 つのレイヤーに等分して いた。同様に、今回深度構造図を更新したモデルにおいて、Proportional に 6 等分した場 合、IW-2 の坑跡に沿ったグリッディングとアップスケーリングファシスが 2018 年度モデ ルから異なる結果となった。そのため、グリッディングとアップスケーリングファシスが 2018 年度の結果と同等となり、かつモデルが深度構造の変更のみを反映するように、レイ ヤーの等分方法に Fractional を用いて任意の比率で区分する調整を実施した。結果とし て、本検討では萌別層砂岩層上部のゾーンについて、11:11:10:9:9:10 の比を設定してグ リッディングを実施した。

もう一つはグリッドモデルを well tops で調整した。2018 年度モデルは well tops でグ リッドモデルを調整していない。対して、本検討では深度構造図を変更したため、well tops で調整しない場合、2018 年度モデルに比べて萌別層貯留層の上限および下限のグ リッド深度が数 m 異なる結果となる。そのため、2020 年度モデルでは well tops でグリッ ドモデルを調整することで、2018 年度モデルからの乖離を可能な限り低減した。

本検討で作成したグリッドモデルを図 5.2-4 に示す。また、図 5.2-5 に IW-2 における 2018 年度モデルと 2020 年度モデルのそれぞれのグリッドモデルとアップスケーリング ファシスの比較を示す。上記の調整の結果、各グリッドの上限・下限深度は 2018 年度モ デルに比べて数 10 cm 程度の差に留まるものとなった。アップスケーリングファシスも 2018 年度と同様である。依然としてわずかなグリッドサイズの差は残ったものの、これ以 上の改善はソフトウェアの仕様上困難であることと、この差が貯留層シミュレーションに 与える影響は限定的であると判断し、本結果を 5.5 節で述べる貯留層シミュレーションに 使用することとした。

5 - 17

表 5.2-1 モデルグリッドセル設定

			セルサイズ	セル番号	
I方向(東西方向)				1~163	
	J方向(南北方向)				
	Zone名	Zone区画	レイヤー数	セル番号	レイヤリング方法
	鵡川層(Mukawa)	鵡川層(Mukawa) QTN_Base~MU_Base		1	Proportional
K方向 (深度方向)	萌別層泥岩層(Mo_SH_TS_T) MU_Base~MO_SH_Base_TS_Ⅲ		7	2~8	Farctions
	萌別層砂岩層上部(Mo_Sst_up_LST)	MO_SH_Base_TS_III~SB-III	6	9~14	Farctions
	萌別層砂岩層下部(Mo_Sst_low_HST)	SB-III~MO_Base_MFS_II	15	15~29	Proportional
	萌別層(+荷菜層)互層(Ni_Alt_TS) MO_Base_MFS_II~SB-II		10	30~39	Proportional
	萌別層(+荷菜層)砂岩層(Ni_Sst_HST)	SB-II~SB-I	10	40~49	Proportional

南方から見たグリッドモデル

IW-2

図 5.2-5 IW-2 におけるアップスケール前のファシスログおよび堆積組相ログと、2018 年 度モデルと 2020 年度モデルのそれぞれのアップスケーリング堆積組相とアップ スケーリングファシスおよびグリッドモデルの比較

5.2.3 地質モデル更新結果

図 5.2-6 に 2018 年度地質モデルと 2020 年度地質モデルの IW-2 坑跡沿いの断面を示

す。両者を比較すると、グリッディングとアップスケーリングファシスを維持したまま、 圧入位置の北側において萌別層泥岩基底(MO SH Base TS-III)と SB-3の深度構造図の 変更が反映されていることが確認できる。2018年度モデルでは圧入位置の北側に高まりが 解釈されていたが、2020年度モデルではこの高まりが消失し、IW-2が萌別層泥岩基底に 到達する位置が構造の高まりとなっている。したがって、本検討で作成した地質モデルと 2018年度地質モデルを使ったシミュレーション結果を比較することで、深度構造図の変更 による圧入挙動の影響を評価できるものと判断される。

図 5.2-6 IW-2 坑跡沿い断面における 2018 年度地質モデル(上)と 2020 年度地質モデル (中)の比較。(下)は岩相分布モデルの平面図であり図中 A-A'は断面線の位

置を示す。

本検討ではグリッドモデルを更新したうえで、岩相分布モデルを確率論的に作成した。 確率論的手法として SIS (Sequential Indicator Simulation)を使用している。作成した 岩相分布の一例を図 5.3-7 に示す。第 5.6 節で述べる貯留層シミュレーションにおいて は、岩相分布モデルの各ファシスについて決定論的にプロパティーを与え、ヒストリー マッチングの予備検討を実施した。

図 5.2-7 萌別層貯留層上部の岩相分布モデル(No.1~9を表示)

5.3 苫小牧 IW-2 圧入圧力の予実績比較

圧入井に設置した PT センサーより取得した坑底圧力データに基づき、2019 年度に作成 した貯留層モデルを用いて、坑底圧力の予実績比較を実施した。また、2020 年度に実施し た弾性波探査解析結果を用いて、CO2 飽和度の比較を行った。

5.3.1 予実績比較

ここでは、2019年度評価にて作成した具現像モデルを用いて、IW-2 と OB-2 の坑底圧 力の予実績比較、弾性波探査の差分解析結果とシミュレーションによる CO₂ 飽和度の比較 を実施した。

なお、グラフで示す主な結果は、30 個の具現像のうち、2019 年度評価にて実施した累 計圧入量 30 万 t-CO₂ ケースにて P90 相当、P50 相当、P10 相当と評価した具現像 No.24、25、29 の 3 個とした。

モデルへの入力値は表 5.3-1 のとおりである。各パラメータの設定については、後述する第 5.4 節に記載した。

モデル	2019 年度モデル				
サイブ	フィールドモデル : 15 km×10 km×1,700 m				
91 ~	セクターモデル:3 km×3 km×1,500 m				
- Fill w ド	フィールドモデル : 163×126×173				
999F	セクターモデル:31×31×48				
マクニノゴ・ゲリッド粉	フィールドモデル:708,711				
アクティン・クリット致	セクターモデル:193,386 (細分化後)				
基準温度	36.2°C@920.41 m(TVDSS)				
基準圧力	9,290 kPa@920.41 m(TVDSS)				
塩分濃度(ppm NaCl)	3,150				
	フィールドモデル:開境界				
境乔宋件	セクターモデル:閉境界				
貯留層					
孔隙率	岩相毎に設定				
浸透率(mD)	岩相毎に設定				
ネットグロス比	岩相毎に設定				
岩石圧縮率(1/kPa)	4.54×10^{-6}				
也신경제조라성	岩相 10、11:n=2.0				
化刈凌透率曲線	その他:n=3.5				
1	岩相 10、11=0.60				
Krg	その他=0.143				
krw	1.00				
Sgc	0.05				
Swir	浸透率と孔隙率より算出				
FZ-THSZ (Sammar)	Sgc+0.5×(1-Swir-Sgc)				
	GEM デフォルト式使用				

表 5.3-1 モデル入力値

モデル	2019 年度モデル				
毛细筒压力	CCS-2, OB-2, IW-2				
七袖自庄力	コア試料より作成				
コ 階	フィールドモデル : 2.4×10 ¹¹				
	セクターモデル: 1.2×10 ¹⁰				
遮蔽層					
孔隙率	0.299				
浸透率(md)	0.0015				
相分温泽密曲组	krg 曲線:Corey ¹⁾				
111/2024世禄	krw 曲線:van Genuchten ²⁾				
krg	1.00				
krw	1.00				
Sgc	0.05				
Swir	0.638				
ヒステリシス (Sgrmax)	なし				

5.3.2 IW-2 坑底圧力の予実績比較

フィールドモデルを用い、圧入を開始した 2016 年 4 月 6 日から圧入を終了した 2019 年 11 月 30 日までの CO₂圧入実績を入力し、IW-2 の坑底圧力を予測した。予実績比較は図 5.3-5 のとおりである。

図 5.3-5(a) IW-2 坑底圧力の予実績比較

注1) 青線の仕上げ深度上端坑底圧は茶線の PT センサー深度坑底圧(実測値)をもとに PT センサー から仕上げ区間までの CO2の密度を温度圧力より補正し深度換算した計算値である。 図 5.3-5(b) IW-2 坑底圧力の予実績比較(2019/11/22~)

予実績比較にて使用した圧入中の坑底圧力実績値は、管内流動のシミュレーションソフ トウェアである「PIPESIM(Schlumberger 社製)」を使用し、PT センサー深度の測定 圧力および温度を基に、仕上げ区間上端深度での圧力を推定した値を用いている。

正入停止中の坑底圧力実績値(図 5.3-5(a))は、フォールオフ解析(以下、「FOA」と称する。)で FOA9 と FOA10、FOA14 においてレイトラディアルフローが見られた点を 踏まえて、それぞれの測定が終了する時点(FOA9 は 2018 年 7 月 25 日、A10 は 2018 年 12 月 27 日、FOA14 は 2019 年 7 月 24 日)での密閉坑底圧力を使用した。また、2019 年 11 月 22 日以降では、1 箇月おきの密閉坑底圧力を使用した。なお、使用した密閉坑底圧 力は、PT センサー深度での測定圧力および温度における CO2 密度が、仕上げ区間上端ま で続くとした場合の外挿値である。

フィールドモデルによる予測値は、圧入停止以降、坑底圧力が低下傾向を継続してい る。一方で、PT センサーの測定圧力(図 5.3-5(b))は、2020 年 8 月頃より約 2 週間周期 で上下する様子が顕著に見られるものの低下傾向は続いている。この PT センサーでの測 定圧力を仕上げ区間上端深度に深度変換した圧力値は、2020 年 5 月頃よりほぼ一定に転じ ている。これは第 4 章 9 節でも述べたとおり、PT センサー深度における温度が圧入停止 以降低下し続けていることから、図 5.3-6 に示すように換算に使用した CO2 密度が上昇し ているためである。

実際に仕上げ区間上端深度における坑底圧力がこのような挙動を示すか否かについて は、現状の深度換算方法からは不確実性が残る。推定精度をより高めるには坑内の温度圧 力勾配および湛液面の深度等を測定する必要があると考えられる。

図 5.3-6 IW-2 仕上げ区間上端深度換算圧力値と密度変化(2019/11/22~)

5.3.3 OB-2 坑底圧力上昇値の予実績比較

フィールドモデルを用い、圧入開始の2016年4月6日から2019年11月22日までの CO2圧入実績を入力し、OB-2の坑底圧力を予測した。予実績比較は図5.3-7のとおりであ る。なお、フィールドモデルの値は圧入開始直前の坑底圧力を初期圧力として圧入後に上 昇する坑底圧力の推移を予測している。

第4章9節で前述したように、実測値の圧力上昇値を求めるために用いた基準値は、初 期圧力よりも低い値であり、坑底圧力の上昇値そのものを評価するに足るデータではな い。また、測定器の定期点検に伴い機器の回収・再設置が影響し、2020年2月18日や 2020年10月16日に圧力上昇値の急変が生じているように、絶対値の傾向を考察するこ とが困難である。

ただし、モデル上でも IW-2 への圧入開始後に OB-2 の圧力上昇が認められることから 圧力伝搬が OB-2 には届いていると想定され、少なくとも OB-2 と IW-2 は同じ貯留層内 にあるものと考えられる。現状モデル上では、OB-2 と IW-2 の間に境界は存在しないこと となっているが、その設定は妥当であると判断される。

5.3.4 弾性波探査との比較

2020年11月22日(30.0万t-CO2圧入時点)に取得した弾性波探査結果に基づく差分 解析結果と、フィールドモデルにおける2020年1月22日でのCO2飽和度分布を図5.3-8 に示した。なお、CO2飽和度の下限値は0.001とした。

シミュレーション結果および差分解析による推定結果とも、坑井の仕上げ区間上部を中 心として CO₂が分布する様子を示しているが、弾性波探査の差分解析結果から推定した CO₂分布領域は、特に坑井中心から東方向および南方向に拡がっていると推定された。

5 - 26

図 5.3-8(a) 差分解析結果とフィールドモデル P10 シミュレーション結果

図 5.3-8(b) 差分解析結果とフィールドモデル P50 シミュレーション結果

図 5.3-8(c) 差分解析結果とフィールドモデル P90 シミュレーション結果

ここで、図 5.3-9 に浅部高浸透率領域にあたる k=11 の傾斜角度を示す。また、図 5.3-10 は k=11 の水平浸透率の分布である。

まず、地層構造の点では差分解析結果より推定される CO₂分布領域においては、地層傾斜は 0-2 度程度とほぼ平坦である。この場合、CO₂が地層傾斜のために浮力により拡散する可能性は低いと考えられる。

一方、フィールドモデル毎の水平浸透率分布の違いとしては、P50の場合、東側および 南西側に有効浸透率が低い領域が存在し、P90では北東側および南側の一部に有効浸透率 の低い領域が分布している。CO2飽和率のシミュレーション結果は、P10と比べて P50は 分布領域が小さく、P90は北側の拡散が抑えられている様子が見られることから、高浸透 率領域の水平浸透率の分布が実際の CO2飽和度分布の形状に影響を与えている可能性が示 唆された。よって、差分解析の結果の CO2分布を再現する場合には、浸透率分布の検討が CO2分布を再現するための一助になると考えられる。

図 5.3-9 k=11 の地層傾斜角度

図 5.3-10(a) フィールドモデル P10 における k=11 の有効浸透率分布

図 5.3-10(b) フィールドモデル P50 における k=11 の有効浸透率分布

図 5.3-10(c) フィールドモデル P90 における k=11 の有効浸透率分布

【参考文献】

- Corey, A.T., "The Interrelation between Gas and Oil Relative Permeabilities" Producers Monthly November, p.38-41 (1954)
- van Genuchten, M.TH., "A closed-form equation for predicting the hydraulic conductivity of undersaturated soils" Soil Science Society of America. Journal Vol 44 p.892-898 (1980)

5.4 苫小牧 IW-2 フォールオフの解析

IW-2 ではこれまで合計 17 回の FOA が実施された。本節では FOA17 について、実測 値の解析解および流動シミュレーションを用いた数値解を基に、流動様式と貯留層性状を 推定した。

5.4.1 FOA 一覧

表 5.4-1 に FOA についての概要と解析の有無を示す。都合 17 回の FOA には FOA1、 2・・・のように通し番号を付けた。なお、2017 年 3 月 9 日にも圧入停止となったが、坑 口装置点検に伴う短期密閉であったことから FOA から除外した。

FOA17は、2019年度に坑井密閉以降、データ取得を継続中である。

FOA	開始時刻	終了時刻	停止 要因	測定時間	密閉前 平 均 圧入 レート	累計 圧入量
				時间	t-CO2/年	t-CO ₂
FOA1	2016年 4月8日 6時14分	2016年 4月8日 17時1分	外圧 上昇	11	58,800	81
FOA2	2016年 4月17日 22時16分	2016年 5月7日 15時15分	圧縮機 停止	473	109,351	2,558
FOA3	2016年 5月13日 1時0分	2016年 5月14日 14時19分	安全弁 不具合	37	139,056	4,330
FOA4	2016年 5月24日 9時0分	2017年 2月5日 17時35分	計画 密閉	6,177	71,079	7,163
FOA5	2017年 5月25日 9時47分	2017年 7月13日 16時15分	計画 密閉	1,183	64,861	61,239
FOA6	2017年 8月1日 10時0分	2017年 8月3日 9時57分	計画 密閉	48	88,474	65,793
FOA7	2017年 8月15日 9時0分	2017年 9月16日 12時0分	点検・ 修理	771	100,124	69,070
FOA8	2017年 11月30日 9時27分	2018年 1月6日 11時50分	計画 密閉	890	85,159	109,250
FOA9	2018年 5月25日 9時20分	2018年 7月25日 11時36分	計画 密閉	1,466	87,709	188,136
FOA10	2018年 9月1日 2時25分	2018年 12月27日 13時28分	圧縮機 停止	2,819	189,602	207,209
FOA11	2019年 2月8日 8時33分	2019年 2月19日 11時18分	点検・ 修理	267	83,620	217,425

表 5.4-1(a) FOA 一覧(概要)
FOA12	2019年 3月26日 10時37分	2019年 3月28日 11時3分	供給側 都合	48	218,008	233,438
FOA13	2019年 4月19日 13時31分	2019年 5月8日 11時28分	供給側 都合	454	108,463	246,354
FOA14	2019年 6月4日 8時49分	2019年 7月24日 17時10分	計画 密閉	1,208	78,536	261,632
FOA15	2019年 8月23日 5時19分	2019年 9月10日 11時48分	供給側 都合	438	137,885	274,342
FOA16	2019年 10月9日 18時20分	2019年 10月30日 11時8分	供給側 都合	497	80,592	288,874
FOA17	2019年 11月22日 11時30分	測定中	計画 密閉		216,498	300,012

注) FOA17の密閉時間は報告書作成段階でも測定中であるため、空白とした。また、密閉前平均圧入 レートは、圧入レートの変更(オフガス供給量変更)時間を基準に算出した。

		アーリー	レイト	
	圧入	ラディアル	ラディアル	
FOA	停止	フロー(以	フロー (以	備考欄
	方法	下 ERF と称	下 LRF と称	
		する。)	する。)	
FOA1	×	—	—	徐々にレートを下げて圧入停止
FOA2	\bigcirc	×	×	ERF 確認不可
FOA3	×	—	_	徐々にレートを下げて圧入停止
FOA4	\bigcirc	×	×	ERF 確認不可
FOA5	×	_	_	徐々にレートを下げて圧入停止
FOA6	\bigcirc	0	×	フォールオフ時間が短く LRF 確認不可
FOA7	\bigcirc	0	×	フォールオフ時間が短く LRF 確認不可
FOA8	\bigcirc	0	×	フォールオフ時間が短く LRF 確認不可
FOA9	\bigcirc	0	0	
FOA10	\bigcirc	0	0	
FOA11	\bigcirc	0	×	フォールオフ時間が短く LRF 確認不可
FOA12	\bigcirc	0	×	フォールオフ時間が短く LRF 確認不可
FOA13	×	—	—	直前でレートダウンした後に圧入停止
FOA14	\bigcirc	0	×	フォールオフ時間が短く LRF 確認不可
	~			圧入停止前に何度かレート変更した後に
FUA 13	^			圧入停止
FOA16	×	_		徐々にレートを下げて圧入停止
FOA17	\bigcirc	\bigcirc	\bigcirc	

表 5.4-1(b) FOA 一覧(解析の有無)

注) 圧入停止方法の〇×は圧入停止前に一定レートで圧入した期間が存在したかを示す。また、×の場合に は評価の対象とはしなかった。ERF と LRF での〇×は圧力デリバティブ(圧力変化を微分し、時間 的な変化をプロットしたもの)からフローレジーム(流動様式)を確認し、解析したか否かを示 す。

5.4.2 FOA に用いた密閉坑底圧力データ

図 5.4-1 は、PT センサー深度における坑底圧力と坑底温度、その値から求めた CO2密度の推移を示す。

図 5.4-1 PT センサー深度における坑底圧力と坑底温度の推移

圧入中には PT センサー深度での坑底温度が上昇し、逆に密閉中には坑底温度が低下す る事象が確認された。CO₂圧入時に坑底温度が上昇する現象は、岩石からの熱抽出と CO₂ の圧縮、CO₂の位置エネルギー低下に起因し、岩石との熱交換および帯水層の自然対流に より坑内の温度変化が発生することが知られていることから¹⁾、貯留層深度(ここでは仕 上げ区間上端深度)でも温度変化があると考えられる。

CO₂密度は、密閉中には 470 kg/m³から 670 kg/m³と大きく変化する。PT センサー深 度は 921 m(TVDSS)、仕上げ区間上端深度は 973 m(TVDSS)であり、垂直深度で 53 m の 差がある。圧力・温度変化による密度変化を考慮しない場合、密度差が最大で 200 kg/m³ あるため、PT センサー深度から推定する仕上げ区間上端の圧力には最大 0.1 MPa の差が 生じることとなる。

FOA では、kPa 単位の小さな圧力変化から流動様式や貯留層性状を推定するため、PT センサー深度での坑底圧力で解析を実施すると、推定結果に大きな誤差が生じると考えら れた。 観測された CO₂密度変化による影響を取り除くため、PT センサー深度での坑底圧力を 仕上げ区間上端深度での値に変換することとした。流動坑底圧力の補正には「PIPESIM」 を使用しているが、同ソフトウェアは流動時の定常状態における圧力・温度プロファイル を計算する坑内流動シミュレーションソフトウェアであるため、坑井密閉時の圧力遷移状 態には適用できない。そこで、PT センサー深度での坑底温度・圧力での CO₂密度を用い 水頭圧力を求め、仕上げ区間上端深度での坑底圧力に補正することとした。

この手法では PT センサー深度から仕上げ区間上端深度までの区間の温度を PT セン サーの温度と同じと仮定しており、補正精度は限定され、時間が経過するにつれて精度が 低下する傾向がある。

課題解決には仕上げ区間での坑底圧力・温度データの取得が必要であると考えられる。

5.4.3 圧力デリバティブに関する考察

(1) 解析用プロット (ログーログプロット) の作成

FOA では両対数グラフの横軸に密閉時間、縦軸に圧力変化と圧力デリバティブをプロットし利用する(以下、「ログーログプロット」と称する。)。同プロットを利用すること で流動形態(線形流・放射状流・球状流等)およびその領域を識別することが容易とな る。また、タイプカーブ(解析解)と観測データを照合することで貯留層性状を推定でき る。

通常 CO₂のような圧縮性流体の解析には式(5.4-1)に示す Pseudo Pressure が用いられる。

ψ(p):Pseudo Pressure、P:坑底圧力、Po:参照坑底圧力、μ:粘性、Z:圧縮係数

Pradigm 社製の圧力解析ソフトウェア「Interpret」では Meunier et al.(1987)²⁾の手法 により、式(5.4·2)に示すような Normalized Pseudo Pressure として解析する。

m(p): Normalized Pseudo Pressure、:貯留層平均圧力

図 5.4・2 は、FOA17 について坑底圧力データを「Interpret」に入力して作成したログ ーログプロットである。使用した坑底圧力は、実測値に加え、仕上げ区間上端深度に補正 した坑底圧力データ、5.1 節に述べたセクターモデルを用い、圧入開始の 2016 年 4 月 6 日 から 2019 年 11 月 30 日までの CO₂圧入実績を入力して、フォールオフ測定を再現し得ら れた坑底圧力データである。なお、P50 相当のセクターモデルによる結果のみ、密閉後 20628.5 時間(2022 年 3 月 31 日時点)までを記載している。

図 5.4-2 FOA17 におけるログーログプロット

これまでに実施された FOA の評価を振り返り、密閉後 0~0.3 時間(アーリータイム)、密閉後 0.3~10 時間(ミドルタイム)、密閉後 10 時間以降(レイトタイム)に見られるそれぞれの特徴をまとめた。また、今年度新たに取得した坑底圧力データから、FOA17 ではレイトタイムに数値解と異なる挙動が見られた。

① 密閉後 0.3 時間まで

2017 年度評価までは、FOA6、7 の密閉後 0.07 時間~0.20 時間のアーリータイムに、 水平井特有の 1/2 Slope を示す ELF が確認できると解釈していた。

2018 年度に新たに取得した FOA9 では、密閉後 0.1 時間~0.3 時間の間に、鮮明とまで は言えないものの、1/2 Slope のような挙動が確認された。一方で、FOA10 では、1/2 Slope の挙動は確認されず、Wellbore Storage からラディアルフローへ移行する間の遷移 領域と推察される領域しか確認されなかった。FOA6、7、9については、1/2 Slope の前に 圧力デリバティブの乱れが起こっており、ELF ではないかという解釈をミスリードした可 能性が示唆された。

2019 年度評価で新たに解析対象に追加した FOA11、12、14、17 では、明確な 1/2 Slope は確認されず、2018 年度評価で示唆されたとおり、ELF の可能性は非常に低く なったと解釈される。

密閉後 10 時間まで

2017 年度評価では、FOA6、7、8 で見られた Slope0 の挙動は ELF 後に見られたラ ディアルフロー挙動と推察されたため、CO₂領域のラディアルフローと解釈した。

2018年度評価では、FOA9、10のいずれにおいても Slope0の挙動が確認されており、 同様に解釈し、数値モデルにてその挙動を再現し、流動様式(ERF)の妥当性を示した。

また 2019 年度評価においても、FOA11、12、14、17 で一部不鮮明なところはある が、同じく Slope0 の挙動が確認されており、同様に解釈されている。

③ 密閉後 10 時間以降

2017年度評価では、解析解や探査半径の検討から、FOA7、8で見られた上方向に凸の 挙動は、ショックフロントと考えた。

2018年度評価では、FOA9、10では、いずれも上に凸の挙動が見られた後、Slope0が 確認された。ホーナープロット解析と探査半径による検討から、レイトラディアフローで あると解釈し、数値モデルにてその挙動を再現し、流動様式の妥当性を示した。

2019年度評価では、密閉期間の長い FOA14 にて LRF を確認しており、2018年度と同様の解釈をした。

FOA17では、図 5.4-2 に示すように、実測値より作成した圧力デリバティブ、仕上げ区 間上端深度へ換算した圧力に基づく圧力デリバティブでは、ショックフロントを示唆する 上に凸の挙動が確認される。その後、500 時間あたりから LRF を示唆する Slope0 の挙動 が見られる。一方、数値解による圧力デリバティブでは、明瞭な Slope0 の挙動は見られ ず、ショックフロントと LRF の区別もつかない。

また、実測値に基づく圧力デリバティブは、密閉後 2,000 時間あたりで値が急降下する のに対し、数値解により作成した圧力デリバティブは、なだらかに値が低下し 20,000 時 間に達したあたりで急降下している。

次項では、2020年度に新たに加わったデータを用い、実績と数値解との比較から、

FOA17 で観測された LRF および圧力デリバティブの急降下が示す要因について検討を 行った。

(2) レイトタイムの解析

実測値で見られた Slope0 の挙動に対し、ホーナープロット解析を行った。

また、圧力デリバティブの急降下が起こる現象に対し、数値解の結果における管内圧力 勾配の影響を検討した。

(3) ホーナープロット解析

ホーナープロット解析ではラディアルフローと考えられる領域で直線を引き、その傾き から式(5.4-3)を用いて浸透率を推定し、その切片(ホーナータイム=1)から貯留層平均圧 力を算出する。

 $k \times h = \frac{162.6*q*B*\mu}{m}$ 式(5.4-3) k:浸透率、h:有効層厚、q:流量、B:容積係数、 μ :粘性、m:ホーナープロットにおける傾き

Interpret では、ホーナープロット法において、式(5.4-4)に示す Superposition function を横軸に、式(5.4-2)に示した Normalized Pseudo Pressure を縦軸にとり、式(5.4-3)の傾 き m を求める。

$$f(t_{sp}) = \sum_{i=1}^{n} \frac{(q_i - q_{i-1})f(t_n - t_{i-1})}{q_n}$$
 $\ddagger (5.4-4)$

f: Superposition function、 t_{sp} : Superposition time、 q: レート、 n:n 番目

解析に用いた入力値および解析値は表 5.4-2 のとおりであり、マッチング状況を図 5.4-3 に示す。また、2019 年度評価にて実施した FOA9、10、14 のホーナープロット解析結果 との比較のため、図 5.4-4 および表 5.4-3 に圧力デリバティブのログログプロット、ホー ナープロット解析結果をまとめた。

-		•		
入力値	圧入	m³/日	129,623	広1 値止直前のレート
	レート	t-CO ₂ /年	216,498	
	累計	t - CO_2	300,012	

表 5.4-2 ラディアルフロー解析での入力値と解析値(FOA17)

	圧入量			
	有効 層厚	m	181	仕上げ区間×NTG
	CO₂ 容積係数	rm³/m³	0.0028	9.82 MPaG 37.8℃
	CO2 粘性	сP	0.0521	9.82 MPaG 37.8℃
	塩 水 領 域 の粘性	сР	0.77	貯留層平均圧力・温度 (9.82 MPaG、37.8℃@仕 上げ区間上端深度)より算 出
	孔隙率		0.28	2018年度検層解析結果
	CO ₂ 飽和率		0.80	高浸透率領域の不動水飽和 率=0.2より
	総合 圧縮率	1/kPa	$7.28 imes 10^{-5}$	
	水 圧縮率	1/kPa	$4.29 imes 10^{-7}$	9.82 MPaG 37.8℃
	CO2 圧縮率	1/kPa	$8.52\! imes\!10^{-5}$	9.82 MPaG 37.8℃
	岩石 圧縮率	1/kPa	$4.54 imes 10^{-6}$	コア試験データより
解析結果	浸透率 ×有効 層厚	mD×m	994	
	浸透率	mD	62	
	貯 留 層 平 均圧力	MPaG	9.80	

図 5.4-4 FOA9、10、14、17 における圧力デリバティブ

		FOA9	FOA10	FOA14	FOA17
		100 500	077 705	115.062	216 409
	m°/D	128,502	277,785	115,005	210,490
累計圧入量	t-CO₂	188,136	207,209	261,632	300,012
浸透率×有効層厚	mD×m	1,691	1,425	1,662	994
浸透率	mD	141	106	135	62
貯留層平均圧力	MPaG	9.824	9.823	9.827	9.800

表 5.4-3 ホーナープロット解析結果(FOA9、10、14、17)

初期貯留層圧力が 9.82 MPaG であるのに対し、解析解で得られた貯留層平均圧力の結 果は 9.80 MPaG とほぼ一致した。これまでの FOA にて確認された LRF のホーナープ ロット解析結果と比較しても低い値であることが分かる。また、浸透率×有効層厚の値 も、過去の FOA に比べて低い値を示した。これらの結果から、FOA17 で見られる Slope0 の挙動は LRF ではなく、他の流動現象がラディアルフローの挙動をマスクしてしまった 可能性を考えた。

この現象を数値解で検討することを考えたが、数値解ではショックフロントの特徴であ

5-42

る上に凸の挙動や Slope0 の挙動が見られなかったことから、本業務での検討は断念した。数値解にて上に凸の挙動や Slope0 が見られなかった原因を確認した。

ここで、図 5.4-5(a)は、P50 セクターモデルの 2020 年 1 月 22 日時点(密閉後 1452.5 h)における浅部高浸透率領域である k=11 の CO₂飽和度分布である。

図 5.4-5(a) k=11 の CO2 飽和度分布

数値解のシミュレーション結果では、CO2が坑井を中心とした同心円状ではなくいびつ に拡がっていることが分かる。このことからは、ショックフロントとLRFが混在した挙 動が見られる可能性が考えられた。

また、図 5.4-5(b)は、CO₂飽和度の上限値を 0.28、下限値を 0 として、P50 セクターモ デルの 2020 年 1 月 22 日時点(密閉後 1452.5 h)における浅部高浸透率領域である k= 11 の CO₂飽和度分布を表示したものである。

注)赤色のグリッド~赤色以外のグリッド間に CO2 飽和度 0.28 を示す部分が存在する。

図 5.4-5(b) k=11 の CO2 飽和度分布(CO2 飽和度 0.28 以上を赤色で示す)

シミュレーションモデルでは、フラクショナルフロー曲線³⁾を基に算出されるショック フロント領域の CO₂飽和度 0.28 となる範囲が、グリッドサイズが粗い部分に位置してい る。その結果、ショックフロントの挙動が圧力デリバティブで表現できなかった可能性が 考えられる。

今後は、ヒストリーマッチングが終了した具現像において、LGR の範囲を拡大する等グ リッドシステムを検討することにより、この現象が再現可能か否かを検討する。

(4) 管内圧力勾配の検討

レイトタイムにおける圧力デリバティブの急降下は、圧力変化が停止したことを意味す る。FOA17において実測値とセクターモデルによる予測値の圧力デリバティブでも後半に 急降下を示すが、そのタイミングは予測値の方が遅い。実測値においても不確実性が残る 中ではあるが、予測値が実測値よりも遅れて圧力変化が停止した原因を貯留層内の圧力勾 配の推移を用いて検討した。

図 5.4-6 は、数値解を計算するセクターモデルにおいて坑底圧力を参照しているグリッド(ここでは k=7)における貯留層内の圧力勾配が、坑井密閉後、時間経過に伴い変化する様子を示している。

一般的には、水の場合は 1 MPa/100 m 程度、CO₂の場合は 0.6 MPa/100 m 程度の勾配 を示すが、圧入停止直後に 1 MPa/100 m を超えているのは、圧入停止に伴う坑井への地層 水の浸入による影響と考えられる。その影響が小さくなる密閉時間 1 時間後からは圧力勾 配は、CO₂の勾配である 0.6 MPa/100 m に向かって低下し、さらに時間が経過すると、貯 留層内に水が浸入し、密閉 300 時間後からは CO₂の勾配から水の勾配である 1.0 MPa/100 mに上昇していく様子が見られた。

この圧力勾配の上昇により、シミュレーション上ではあたかも圧力低下が継続していく ように計算され、圧力デリバティブが急降下しない要因になっていると考えられる。

数値モデルに基づく圧力デリバティブは、このような圧力勾配の挙動が影響することが 示唆されるが、実際に起こっているか否かについては、PTセンサー以深の圧力勾配の測定 を実施して検証する必要がある。

注) 圧力勾配の計算は、k=7のグリッドにて最上部({16167/764/561}、974mVD)と最下部 ({16157/788/481}、982mVD)の圧力を用いた。

図 5.4-6 P50 セクターモデルにおける管内圧力勾配@974 mVD

5.5 IW-2 長期挙動予測シミュレーション貯留層モデルの更新

本節では、5.1 および 5.2 節のとおり更新した地質モデルを用いて、貯留層モデルを更新 し、坑底圧力および CO₂ 飽和度分布から、今後のヒストリーマッチングに向けた予備検討 を行った。

5.5.1 使用モデル

モデルでの入力値は 5.3 節に示した値と同様である。各パラメータの設定については、 5.5.3 節に詳細を述べる。また、グリッドモデルについても、2019 年度評価を踏襲し、5.3 節に示したのと同様にフィールドモデルとセクターモデルを設定した。

5.5.2 岩相分布の作成

以下のワークフローに沿って、岩相分布を設定した。

岩相分布は、

- 1) 堆積相解析で解釈された、16 個のファシス(岩相)について、坑井における ファシスログをグリッドモデルのサイズにアップスケールする。
- 2) 堆積相解析で解釈された堆積システムを Assign Value を用いて、決定論的手法 により分布させる。
- 3) 2)で分布させた堆積システム毎に坑井におけるファシス組相の解釈結果をハード データとしてファシス組相を分布させる。
- 3)で分布させたファシス組相毎に坑井における岩相の解釈結果をハードデータとして岩相を分布させる。

3)および4)を繰り返すことで、複数の岩相分布を作成した。図 5.5-1 に岩相分布の一例 を示す。

図 5.5-1 岩相分布の一例(k=11)

5.5.3 パラメータの設定

5.5.2 で示した岩相分布において、岩相毎に物性値を設定し、垂直・水平方向の不均質性 を考慮したモデルとした。設定したパラメータは表 5.5-1 のとおりである。以降より各パ ラメータの設定方法について説明する。なお、手法の詳細は後述するが、垂直浸透率と水 平浸透率の比(以下、kv/khと称する。)を導出する際にアップスケーリングを行う。そのため 2019 年度と同様のパラメータ設定方法を踏襲しているが、地質モデル更新に伴う 坑跡変化の影響を受け、岩相 11 の kv/kh の値に変化が生じるため、水平浸透率の値を 1,281 mD から 1,312 mD に更新した。

岩相	孔隙率	水平浸透率 mD	kv/kh	ネットグロス比
1	0.35	2	0.74	0.76
2	0.35	2	0.74	0.76
3	0.35	2	0.74	0.76
4	0.35	2	0.74	0.76
5	0.35	9	0.74	0.76
6	0.28	13	0.72	0.77
7	0.29	11	0.73	0.69
8	0.28	11	0.66	0.80
9	0.27	2	0.82	0.56
10	0.29	43	0.72	0.85
11	0.26	1,312	0.65	0.82
12	0.24	3	0.72	0.78
13	0.22	19	0.70	0.83
14	0.28	8	0.51	0.75
15	0.23	4	0.65	0.79
16	0.23	4	0.54	0.76

表 5.5-1 岩相毎のパラメータ

(1) 孔隙率

IW-2 と OB-2、CCS-1 それぞれの全孔隙率の検層解析結果を岩相毎に平均した値を用いた。なお、岩相 1~4 はデータ数そのものが少ない(100 個以下、measured depth で10 m 以下)ため、岩質が近い岩相 5 も含めて平均化した値を用いた。

(2) 浸透率

水平浸透率は、岩相毎に各坑井の検層データの全孔隙率と NMR 浸透率のクロスプロットから近似式を作成し、(1)における全孔隙率を代入して求めることとした。

浸透率は、検層解析上、式(5.5-1)により計算している。

浸透率=a×全孔隙率 b(T2LM)c

式(5.5-1)

T2LM: T2 幾何平均、a, b, c:定数

T2LMはT2分布を反映した値であるため、岩相に依存するパラメータであると考える ことができる。したがって、a×(T2LM)。は岩相毎に定数を取ることとなり、浸透率=定数 ×全孔隙率^bと近似することができる。なお、bには一般的な値である4を使用した。定数 a×(T2LM)^cは近似式から求めた数値と実データを用い、最小二乗法を用いて決定した。

表 5.5-2 に各岩相の定数 a と水平浸透率の結果を、図 5.5-2~13 に各岩相についての近 似式を示す。なお、岩相 5~13 については、2019 年度のヒストリーマッチ結果を参照し 定数 a の値を見直している。

		定数		水平浸透率 mD			
岩相		調整	後		調整後		
7 0 110	調整前	2019	2020	調整前	2019	2020	
		年度	年度		年度	年度	
1	123	123	123	2	2	2	
2	123	123	123	2	2	2	
3	123	123	123	2	2	2	
4	123	123	123	2	2	2	
5	123	613	613	2	9	9	
6	198	1,979	1,979	1	13	13	
7	816	1,632	1,632	6	11	11	
8	858	1,717	1,717	5	11	11	
9	96	287	287	1	2	2	
10	3,007	6,014	6,014	21	43	43	
11	2,094	273,276	279,765	10	1,281	1,312	
12	459	918	918	1	3	3	
13	1,724	8,622	8,622	4	19	19	
14	1,324	1,324	1,324	8	8	8	
15	1,392	1,392	1,392	4	4	4	
16	1,419	1,419	1,419	4	4	4	

表 5.5-2 調整前後の定数 a と水平浸透率

図 5.5-2 岩相 1-5 における孔隙率-浸透率プロットと近似式

図 5.5-3 岩相 6 における孔隙率-浸透率プロットと近似式

図 5.5-4 岩相7における孔隙率-浸透率プロットと近似式

図 5.5-5 岩相 8 における孔隙率-浸透率プロットと近似式

図 5.5-6 岩相9における孔隙率-浸透率プロットと近似式

図 5.5-7 岩相 10 における孔隙率-浸透率プロットと近似式

図 5.5-8 岩相 11 における孔隙率-浸透率プロットと近似式

図 5.5-9 岩相 12 における孔隙率-浸透率プロットと近似式

図 5.5-10 岩相 13 における孔隙率-浸透率プロットと近似式

図 5.5-11 岩相 14 における孔隙率-浸透率プロットと近似式

図 5.5-12 岩相 15 における孔隙率-浸透率プロットと近似式

図 5.5-13 岩相 16 における孔隙率-浸透率プロットと近似式

(3) ネットグロス比

IW-2、OB-2 および CCS-1 において、Vcl、有効孔隙率 PHIE、全孔隙率 PHIT、の間 で以下の関係を前提として検層解析を実施している。

$PHIE = (1 - Vcl) \times PHIT$

一方 PHIE/PHIT はネットを反映すると考えられるため、ネットグロス比=(1-Vcl)として、岩相毎に平均した値を用いた。なお、岩相 1~4 はデータ数そのものが少ない(100 個以下、measured depth で 10 m 以下)ため、岩質が近い岩相 5 も含めて平均化した値を用いた。

(4) kv/kh

垂直浸透率は、アップスケーリングの際に調和平均により得られる値である。アップス ケーリングする際の垂直方向のグリッドサイズは 2017 年度評価における最小のグリッド サイズに倣い、1.25 m とした。

まず、水平浸透率と垂直浸透率をそれぞれ加重平均と調和平均を用いて、1.25 m にアッ プスケーリングし、kv/kh を算出した。次にアップスケーリングした際に占める割合が、 最も大きい岩相をアップスケーリングした範囲の代表とし、再度岩相毎に浸透率を平均し て kv/kh を算出した。

5.5.4 ヒストリーマッチングに向けた予備検討

IW-2 坑底圧力および CO2 飽和度分布について、実績値との比較を実施した。

(1) IW-2 坑底圧力の比較

式(5.5-2)に示す目的関数の式を用い、マッチング状況の参考にした。この数値が小さい ほど坑底圧力のマッチングは良好であると判断される。

目的関数 =
$$\frac{1}{n_{obs}} \sum_{i=1}^{n_{obs}} \sqrt{\left(d_{sim}^{i} - d_{obs}^{i}\right)^{2}}$$
式(5.5-2)

nobs:実績データ数、dsim:シミュレーション計算値、dobs:実績データ

セクターモデルを使用し、2016年4月14日から2020年9月30日までの目的関数を岩 相分布毎に計算した結果が、図5.5-14である。10通り全ての岩相分布において、目的関 数は25kPaを下回っており、実績とシミュレーションとの差は小さく、マッチングは良 好と判断した。

図 5.5-14 目的関数

このうち、目的関数の小さい順に3通りの岩相分布(岩相分布ナンバー1、3、6)について、フィールドモデルを用いて、IW-2の坑底圧力を予実績比較した図を図5.5-15に示す。2019年度モデルと比較すると、CO2圧入中、密閉中いずれの場合においても、今年度更新した貯留層モデルの方が、低い坑底圧力を示す結果となった。これは、5.5.3節のパラメータ設定でも述べたとおり、2020年評価モデルでは、浅部高浸透率領域にあたる岩相11の水平浸透率が、2019年度評価モデルよりも若干上昇していることが影響していると推測される。

図 5.5-15 IW-2 坑底圧力の予実績比較

(2) 差分解析との比較

2019 年度に実施した差分解析では、RMS 振幅のアノマリーから CO_2 が広がっている範囲を平面的に確認した。ここでは、RMS 振幅のアノマリーから CO_2 が存在していると推定される領域を CO_2 分布と称し、シミュレーション結果の CO_2 飽和度分布とは異なる。 本結果と岩相分布 1、3、6 について、2020 年 1 月 22 日時点(30.0 万 t- CO_2 圧入時点)での CO_2 飽和度分布を出力したものが図 5.5-16 であり、差分解析結果と比較したものが図 5.5-17~19 である。なお、 CO_2 飽和度の下限値は 0.001 とし、シミュレーション結果は浅部高浸透率領域である k=11 を示している。

図 5.5-16 差分解析結果

注) CO2 飽和率分布を示す。その下限値を 0.001 として設定した。

注) CO2 飽和率分布を示す。その下限値を 0.001 として設定した。

図 5.5-18 差分解析結果と岩相分布 3 のシミュレーション結果の比較

注) CO2 飽和率分布を示す。その下限値を 0.001 として設定した。 図 5.5-19 差分解析結果と岩相分布 6 のシミュレーション結果の比較

弾性波探査の差分解析結果から推定した CO₂分布領域は、坑井中心から特に東方向およ び南方向に拡大しているのに対し、シミュレーション結果に基づく CO₂分布は坑井を中心 におおよそ同心円状に広がっている。また、CO₂飽和度が同心円状に分布する傾向は 3 ケース全ての岩相分布で同様に見られた。ここで、図 5.5·20 に k=11 の傾斜角度を示 す。差分解析から推定される CO₂分布領域においては、北側および西側の一部箇所にやや 傾斜角が上がるエリアはあるものの、2 度を超える大きな傾斜はないことが分かる。シ ミュレーション結果の CO₂飽和度分布形状が同心円状に拡がっている様子と整合的であ る。

5-60

図 5.5-20 k=11 の地層傾斜角度と差分解析結果

一方、図 5.5・21~23 に示す k=11 の水平浸透率の分布でも、差分解析結果より推定される CO₂分布領域においては高浸透率領域が広がっている。つまり、地質構造更新により、浅部高浸透率領域の傾斜角度に更新はあったものの、5.3 節での予実績比較同様、現状のシミュレーションの設定では CO₂ 飽和度分布に与える影響はないと考えられる。

CO₂分布形状の再現性を向上するには、浸透率分布の調整が有効であると示唆されるため、今後差分解析の結果を再現する場合には、浸透率分布について検討することが一助となると考えられる。

ただし、今年度更新した貯留層モデルは、2019年度評価のヒストリーマッチングによ り、浅部と深部に高浸透率領域を設定したモデルを踏襲しているため、地質構造による影 響を受けにくいモデルになっているとも考えられる。地質構造の更新による影響を検証す るには、均質モデルを想定した検討が有効と考えられる。

図 5.5-21 岩相分布1の浸透率分布(k=11)と差分解析結果の比較

図 5.5-22 岩相分布 3 の浸透率分布(k=11)と差分解析結果の比較

図 5.5-23 岩相分布 6 の浸透率分布(k=11)と差分解析結果の比較

5.5.5 まとめ

2020年度更新した地質モデルにて10通りの岩石分布を用いて、ヒストリーマッチングに向けた予備検討を実施した。

まず、IW-2 坑底圧力の予実績比較を行ったところ、目的関数が 25 kPa を下回り、今回の浸透率の設定方法により坑底圧力を再現することを確認した。

また、CO₂飽和度分布について、差分解析結果に基づく推定とシミュレーション結果と を比較した。シミュレーション結果では、坑井を中心に同心円状に CO₂分布が拡大する様 子が見られた。各岩相分布では、坑井周辺に高浸透率の岩相が分布しており、また、地層 傾斜はほとんどないため、現在のシミュレーションの設定では本業務で実施した地質構造 変更による影響はないものと考えられる。なお、坑井近傍の浸透率分布が、CO₂飽和度分 布の形状に影響を与える可能性が示唆されるため、来年度以降、差分解析結果を再現する 場合に、浸透率分布の検討を行うことを計画している。

5.6 地化学反応に対する検討(流動-地化学連成シミュレーション)

流動-地化学連成シミュレーションは地下に圧入した CO₂の地層内での挙動を予測する 流動シミュレーションと、地層内での地化学反応とを連成した流動-地化学連成シミュ レーションからなるが、特に地化学部分のモデル作成が難しく時間も要するため、今後の 安全かつ普遍的な CCS の実施のためのシミュレーション作業を効率化するため、地化学-流動連成シミュレーションに関する最新の動向(情報)を調査し、複数の地化学有識者の 意見も踏まえてとりまとめた。

5.6.1 動向調査概要

(1) 調査対象

本調査では、以下の項目を対象とした。

- シミュレーションにおける初期パラメータとして圧入前地層水組成の決定方法
 ・熱力学再構成の実施の有無と実施方法
 - ・Al等微量な元素のモデル上での取り扱い方法
- 2) シミュレーションにあたって想定する溶液化学種の選定方法と化学種の必要数
- 3) シミュレーションにおける反応速度パラメータや反応表面積の取り扱い方法
- 4)シミュレーション結果における反応速度パラメータや反応表面積の不確実性の
 取り扱い方法
- 5 流動-地化学連成シミュレーションの検討結果の表示方法
- 6) CCS における地化学連成シミュレーションの意義や必要性に対する最新の有識 者見解
- 7) その他、調査の結果、判明した最新の動向等、重要なトピックス
- (2) 調査方法

① 流動-地化学連成シミュレーションの設定法の現状に関する調査

現在の CCS の長期挙動シミュレーションにおいては、流動–地化学連成シミュレータ である TOUGHREACT (Xu and Pruess, 1998; 2001)が最も一般的に適用されている。そ こで、CCS を対象とした TOUGHREACT の設定法の現状について、文献情報に基づいて 調査を行った。

② 地化学連成シミュレーションの設定法の改善(案)

上述の調査結果を踏まえて、流動-地化学連成シミュレーションの設定法の改善案を提示した。この際には、地化学的数値解析ソフトウェアの概要を整理し、地層水の初期設定

と反応速度計算に関わる留意点をとりまとめた。特に前述の記載項目のうち文献からの情報が得られなかった溶存化学種については、主要元素((Cl、S、C、Na、K、Ca、Mg、Al、Si、およびFe))ごとにその出現状況を計算し、Eh - pH 図*¹⁾および濃度 - pH 図として例示した。

次に、地層水組成の推定方法に関して、化学平衡論的および反応速度論的な観点から特 徴を検討した。さらに、速度論計算を実施する際の留意点についても整理を行った。

③ CCSにおける流動-地化学連成シミュレーションのあり方に関する提言

CCSにおける流動-地化学連成シミュレーションの意義や必要性に関して、有識者からの意見を集約し、そのあり方に関する提言としてまとめた。

5.6.2 流動-地化学連成シミュレーションの設定法の現状調査

- (1) 鉱物組成
- ① 初期鉱物組成

初期鉱物の組成はきわめて重要であり、ほぼすべての研究において、地下から採取され たコア試料の分析結果が適用されている。CCS プロジェクトにおいては、最初に調査井が 掘削されることが一般的であり、その際に採取されたコア試料の分析結果が利用できる。 一部参照地域で過去に入手された岩石組成が適用される場合もある。これらの岩石試料 は、XRF等の全岩分析に加えて、薄片観察やX線回折、FTIR、電子顕微鏡(EPMA、 TEM)観察からの鉱物学的情報に基づいて、鉱物組成が求められる。この際に、線形プロ グラミングノルム解析が適用されることもある(Dalkhaa et al. 2013)。複数の場合は平 均化して求められる。

特に岩石片を構成する鉱物は顕微鏡下での同定が困難であるため、モデル中ではこれを 除外して初生鉱物のみとするか(e.g., Hsieh et al., 2017)、あるいは定性的評価に基づい て推測される鉱物を用いることが一般的である。後者の例として、鉄イオンによる染色を 説明するために、微量の赤鉄鉱が加えられている(Xu et al., 2005)。また、スメクタイ ト、イライト、カオリナイト等の粘土鉱物の含有量は、岩石片中の鉱物組成の残渣として 任意に設定されている(Xu et al., 2005)。

計算の負担を軽減し高速化を図るために、初期鉱物組成の設定に際しては、いくつかの 単純化や仮定が取り入れられている。例えば、斜長石の組成は、Xu et al. (2005)は灰曹長 石で、Tambach et al. (2015)は曹長石で代表している。特に Xu et al. (2005)は、緑泥石を

^{*1)}水中における化学種(特に金属)の存在領域を電極電位(Eh)とpHの2次元座標上に図示したものである。

1:1 の clinochlore/daphnite 成分である ripidolite と仮定している。ここでは、イライトと スメクタイトは区別して扱われ、イライトは detrital のイライトと同等、スメクタイトは Na 端成分あるいは Ca 端成分で区別される。一方、Tambach et al. (2015)は、イライト、 スメクタイト、雲母をすべてイライトとしてモデル化している。極端に短い期間(20 日 間)のシミュレーションにおいては、反応性の高い炭酸塩鉱物(カルサイトおよびドロマ イト)のみを設定している例もある(Lei et al., 2016)。

地化学シミュレーションでは、平衡論的挙動あるいは速度論的挙動のいずれに従うかに ついて、鉱物ごとにあらかじめ設定がなされる。これに関して、カルサイトのような炭酸 塩鉱物は、他のケイ酸塩鉱物と比較して圧倒的に反応速度が速いため、平衡状態であると 仮定することが一般的である。

2 二次鉱物組成

CCSにおける代表的な二次鉱物には、カルサイト、マグネサイト、ドロマイト、シデラ イト等の炭酸塩鉱物と、カオリナイト、スメクタイト等の粘土鉱物、赤鉄鉱等の鉄酸化物 があげられる。これらは必ずしも初生鉱物に含まれているとは限らず、その設定はある程 度主観的な評価に頼らざるを得ない。このため、予想と結果が異なる場合が散見される。 例えば、Dalkhaa et al. (2013)のシミュレーションではシデライト、ドーソナイト、マグ ネサイトが設定されたが、結果的にいずれも生成が認められなかった。同様に、Wolf et al. (2016)では、二次鉱物として始めにマグネサイト、ドロマイト、シデライト、磁鉄鉱、 赤鉄鉱、灰長石、アルーナイト、石膏が考慮されたが、シデライトと赤鉄鉱以外は沈殿し ていない。さらに、Choi et al. (2017)では、アンケライト、ドロマイト、石膏、マグネサ イト、シデライト、Ca-スメクタイト、Na-スメクタイトのうち、ドロマイト、石膏および マグネサイトは沈殿していない。

これらの情報が事前に得られている場合には、あらかじめ二次鉱物のリストから除外す ることで計算の負担軽減が図られる。これに関して、単純化の極端な例として、CCS条件 下でのウランの地化学的挙動に焦点を当てていることを理由に、カルサイトやドロマイト 等の炭酸塩鉱物をあえて二次鉱物として扱っていない研究もある(Wang et al., 2020)。

CCS の地化学シミュレーションにおいては、鉱物トラップの代表としてドーソナイトが しばしば提示されている。具体的には、10,000 年に及ぶ地化学シミュレーションでは、曹 長石が溶解することで、溶出した Na と Al からドーソナイトが沈殿することが予想されて いる。しかしながら、その妥当性については意見が分かれている。一つの例として、期間 が1,000 年と短く、かつ曹長石の含有量がそれほど多くない場合には、ドーソナイトが沈 殿しないことが示されている(Dalkhaa et al., 2013)。ドーソナイトおよびマグネサイト を含まないケースと含むケースをそれぞれ計算することで、鉱物トラップに及ぼす感度解 析がなされている例もある(Tambach et al., 2015)。当該研究では、両鉱物の沈殿を想 定することで、CO₂分圧が非常に低い条件において貯留層の孔隙率と CO₂分圧がいずれも 相対的に大きく低下したが、より高い CO₂分圧下の貯留層において存在が確認できないこ とから、現行の地化学データベースにおいて、これらの鉱物の沈殿が過大評価されている ことが示唆されている。

(2) 地層水組成

① 溶存元素

鉱物組成と同様に、地下から採取された地層水の分析結果が適用されている。陽イオン として、Na、K、Mg、Ca、Al、Fe、陰イオンとして、Cl、SO₄、HCO₃、が設定される ことが一般的である。また、実際には観測されていない元素が便宜的に設定されることも ある。例えば、Shevalier et al. (2011)は、ケイ酸塩鉱物が存在することを踏まえて、酸化 還元反応を保証するために、AlO₂ と O₂(aq)を含めている。

一方で、地層水の採取が行われていない等、地層水組成の情報が入手できない場合に は、純水や NaCl 溶液と前述の初期鉱物をバッチで反応させ、初期溶液組成を算出するこ ともある(Xu et al., 2005; Cantucci et al., 2015; Tambach et al., 2015; Zhang et al., 2015; Hsieh et al., 2017)。

2 溶存化学種

溶液中のイオンは単体のみでは存在せず、様々な溶存化学種(イオン対)を形成するこ とが知られている。海水を例にとると、主要な陽イオンおよび陰イオンに対する溶存化学 種の存在比は、それぞれ表 5.6-1 および表 5.6-2 のとおり見積もられている(Garrels and Thompson, 1962)。

式 0.0 「 横木 の工 文陽 り 2 に 別 7 6 名 10 1 住 の 正 L								
イオン	フリーイオン	SO4 ²⁻ イオン対	HCO₃ ⁻ イオン対	CO ₃ ²⁻ イオン対				
Na+	99	1	—	—				
K+	99	1	_	—				
Mg ²⁺	87	11	1	0.3				
Ca ²⁺	91	8	1	0.2				

表 5.6-1 海水中の主要陽イオンに対する溶存化学種の存在比

イオン	フリーイオン	Ca イオン対	Mg イオン対	Na イオン対	Kイオン対
SO42-	40	3	19	38	0.5
HCO ₃ -	74	3	15	9	—
CO32-	10.5	7	63.5	19	—
Cl-	100	_	_	_	_

表 5.6-2 海水中の主要陰イオンに対する溶存化学種の存在比

上記の結果からは、各イオンが必ずしも全てフリーの形態ではなく、イオン対としても 存在している様子が明らかである。結果として、海水中の主要成分 X の総濃度[Xr](mol/l) は、以下のとおりイオン単体に加えて各イオン対の濃度の和として算出されることとなる (Berner, 1971)。

【陽イオン】

 $[Na^{+}T] = [Na^{+}] + [NaSO_{4}] + [NaHCO_{3}] + [NaCO_{3}]$

 $[\mathbf{K}^{+}\mathbf{T}] = [\mathbf{K}^{+}] + [\mathbf{K}\mathbf{SO}_{4}]$

 $[Ca^{2+}T] = [Ca^{2+}] + [CaSO_4^0] + [CaCO_3^0] + [CaHCO_3^+]$

 $[Mg^{2+}T] = [Mg^{2+}] + [MgSO_4^0] + [MgCO_3^0] + [MgHCO_3^+]$

【陰イオン】

 $[C1^{-}T] = [C1^{-}]$

 $[SO_{4^2}] = [SO_{4^2}] + [CaSO_{4^0}] + [NaSO_{4^*}] + [KSO_{4^*}] + [MgSO_{4^0}]$

 $[HCO_{3}T] = [HCO_{3}] + [NaHCO_{3}] + [MgHCO_{3}] + [CaHCO_{3}]$

 $[CO_{3^{2}}T] = [CO_{3^{2}}] + [NaCO_{3}] + [MgCO_{3^{0}}] + [CaCO_{3^{0}}]$

 $[CO_{2T}] = [CO_2] + [H_2CO_3] + [HCO_3] + [CO_3] + [NaCO_3] + [NaHCO_3] + [CaCO_3]$

+ $[CaHCO_3^+]$ + $[MgCO_3^0]$ + $[MgHCO_3^+]$

これら溶存化学種を適切に設定することは地化学シミュレーションにおいて重要である。しかしながら、特に溶存化学種およびその選定方法については、研究者自らが試行錯誤的に検討し、一種のノウハウとして明示されていないことが一般的である。実際に、今回の調査においても記載が全く確認できなかった。この点については 5.6-3 で詳述する。

初期地層水組成の決定方法

通常は初生鉱物と初期に設定した溶液を、対象とする温度、圧力条件でバッチ反応さ

せ、平衡状態への収束を待って、地層水組成が決定される。しかしながら、完全な平衡状態の達成は現実的には困難であり、ある一定の計算期間経過後の疑似的な平衡状態をもって、初期状態とみなすことが一般的である。この際の計算期間は、対象とする系の多様性に依存するが、10年(Zhang et al., 2015)から1,000年(Okuyama et al., 2013; Wang et al., 2020)、さらには10,000年(Tambach et al., 2015; Wolf et al., 2016)に至るまで様々である。

(3) 反応速度

① 反応速度式

CCS では、CO₂の圧入に起因して地層水が酸性化し、鉱物の溶解が開始するが、この際の鉱物種 mの溶解速度の記述には、一般的に以下の式 5.6-1 いる(Lasaga, 1984; Steefel and Lasaga, 1994)。

$$R_m = \pm k_m A_m a_{H^+}^n \left\{ \left(\frac{Q_m}{K_m} \right)^\mu - 1 \right\}^{\upsilon} \qquad (\not \gtrsim 5.6\text{-}1)$$

ここで、k:反応速度定数、A:反応比表面積、 a_{H+} : H+の活量、n: H+による触媒効果 を表す反応次数、K: 平衡定数、Q: イオン活動度積である。 μ とu は実験により決めら れる正の定数であるが、いずれも1に設定されることが多い。

式 5.6-1 に温度依存性を加味したものが式 5.6-2 となる。多くの反応速度が 25℃を基準 としているため、*k*の温度依存性はアレニウスの式に則り、以下のとおり算出される。

ここで、*k*²⁵:25℃における反応速度定数、*E*a:活性化エネルギー、*R*:気体定数、*T*: 絶対温度である。一般的によく知られている鉱物反応のメカニズムは、中性 pH の純水中 でのものと、H⁺(酸性)および OH⁻(アルカリ性)で誘起されるものである。したがっ て、完全な反応速度式はこれら3つのメカニズムを含む式 5.6-3 となる。

$$R_{m} = \pm A_{m} \begin{bmatrix} k_{acid}^{25} \exp\left\{-\frac{E_{acid}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right\} a_{H^{+}}^{n_{1}} \left\{\left(\frac{Q_{m}}{K_{m}}\right)^{\mu_{1}} - 1\right\}^{\upsilon_{1}} \\ + k_{neutral}^{25} \exp\left\{-\frac{E_{neutral}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right\} a_{H^{+}}^{n_{2}} \left\{\left(\frac{Q_{m}}{K_{m}}\right)^{\mu_{2}} - 1\right\}^{\upsilon_{2}} \\ + k_{base}^{25} \exp\left\{-\frac{E_{base}}{R}\left(\frac{1}{T} - \frac{1}{298.15}\right)\right\} a_{H^{+}}^{n_{1}} \left\{\left(\frac{Q_{m}}{K_{m}}\right)^{\mu_{3}} - 1\right\}^{\upsilon_{3}} \end{bmatrix}$$
 (式 5.6-3)
上述の反応速度式は溶解速度を基準としたものであるが、一般的な地化学シミュレー ションでは、鉱物の沈殿速度についても、符号を反対にすることで、同じ反応速度式が適 用されることが多い。しかしながら、沈殿に際しては、核形成やオストワルドライプニン グ等、溶解とは異なるメカニズムが含まれており、反応表面積の扱いを含めて、適用の妥 当性については注意が必要である。

② 反応速度パラメータ

Palandri and Kharaka (2004)は、これまでに室内実験等で得られた主要な鉱物のk eコンパイルしており、CCS の地化学シミュレーションにおいては、このデータセットが最 も一般的に適用されている。特に当該データセットでは、斜長石のような pH 領域に応じ て反応メカニズムが変化する鉱物については、酸性、中性、アルカリ性、それぞれの領域 における k_{25} 、 E_a 、および n の値が区別して提示されている。一方で、注目する鉱物に よっては、別途個別に反応速度パラメータを参照しているケースも見られる。例えば、 Wolf et al. (2016)は、炭酸塩鉱物であるシデライトやアンケライトに対して Zhang et al. (2011)の、イライトに対して Xu et al. (2006)のデータを適用している。

③ 反応表面積

反応表面積は最も不確定性の高いパラメータである。Xu et al. (2005)が根拠としている Sonnenthal and Spycher (2001)の見積もりでは、岩石マトリックス中の鉱物の表面積 は、岩石のフレームワークを構成する立体配列した球の幾何学的面積から計算している。 この際、鉛直方向に沿って粒子先端を切り取っていくことで、孔隙率が測定値と整合する よう調整される。一方、粘土鉱物は板状粒子のコーティングとして考えられる。結果とし て、多くの鉱物で 9.8 cm²/g、粘土鉱物で 151.6 cm²/g という値が採用されている(Xu et al., 2006)。

多くの研究において、上記を始めとする Aの文献値が引用されているが、鉱物組成比等 から改めて A の算出を試みている例もいくつか見られる。例えば、Berger et al. (2019) は、各鉱物の体積分率に比例すると仮定して、比表面積から算出している。また、 Kawata et al. (2014)は、粘土鉱物およびその他鉱物の粒径をそれぞれ 4μ m および 250 μ m と仮定し、3/半径(Lasaga, 1997)より Aを求めている。さらに、2 次元マップ上の鉱 物の周長に 4/n を乗じて Aを算出している例もある(Zhang et al., 2015)。

実際は岩石中には流体が浸透できない空隙があり、また鉱物表面を他の物質がコーティングしている影響等もあるため、上述の方法で求められる幾何学的な表面積は、反応に寄与する表面積とは必ずしも合致しないと考えられている。そこで、最終的な A の設定に際

しては、任意に一桁表面積を低下させる等、研究者により様々な措置が取られている。

(4) 不確実性の取り扱い方法

前述のことから反応速度式においては *A* の不確実性が最も高いが、反応速度は *k* と *A* の 積として算出されるため、どちらのパラメータを変動させても本質的な違いはない。この ため、初期条件の設定 (e.g., Okuyama et al., 2013) やヒストリーマッチング (e.g., Kawata et al., 2014) に際して、両者のいずれかが調整パラメータとして扱われることが 多い。これに関して、特に *A* の振れ幅は大きく、例えば Choi et al. (2017)が緑泥石の溶解 速度を±1 桁ずつ変動させているのみならず、Gherardi et al. (2007)では、反応表面積と 反応速度定数の積の不確実性を評価するために、反応表面積は一定のまま、カルサイトの 反応速度定数を±3 桁ずつも変動させている。

一方で、反応速度の不確実性は必ずしも地化学シミュレーションに影響するとは限らない。例えば、Xu et al. (2005)は、ドーソナイトの反応速度定数を2桁および3桁低下させたが、鉱物固定にはほとんど影響しないことが明らかとなった。この理由として、ドーソナイトの沈殿速度は、斜長石の溶解速度に規定されている点があげられている。

(5) 検討結果の提示方法

不確実性を伴う検討結果をいかに提示するかは、不確実な情報を公開することによる社 会的な影響を考慮すると非常に重要な問題である。前述のとおり、流動-地化学連成シ ミュレーションにおいて反応速度の不確実性は非常に大きいことが知られているが、例え ばこの反応速度の不確実性を取り上げた場合、その提示の仕方は研究者により異なる。

Xu et al. (2005)は、砂岩-頁岩系での CO₂の鉱物固定のシミュレーションにおいて、 ドーソナイトの反応速度定数を初期値から 2 桁および 3 桁低下させる感度解析を実施して いる(図 5.6·1~図 5.6·4)。ここでは、反応速度定数の低下とともに、CO₂ 固定量が砂岩 中でわずかに減少する一方、頁岩中ではあまり変化がないことが示されている(図 5.6·1)。また、図 5.6·2 において、ドーソナイトの生成量のトレンドが CO₂ 固定量と類似 していることに加えて、アンケライトが頁岩中でわずかに減少、砂岩中でわずかに増加す る様子が報告されている。さらに、図 5.6·3 の CO₂ 固定量と図 5.6·4 の鉱物生成量、それ ぞれの経時変化から、砂岩中では、ドーソナイトの反応速度定数を小さくすると、初期の ドーソナイト生成量は少なくなるが、時間とともに増加して、ベースケースとの差が小さ くなることを見出している。これらの結果を踏まえ、反応速度を小さくすると固定量がわ ずかに減少するもののあまり感度を有さないことが示されている。

図 5.6-1 反応速度定数を変動させた検討結果の提示例 1 (Xu et al., 2005, Fig. 9:100,000 年後の砂岩-頁岩系での CO2鉱物固定量。横軸の負の領域が頁岩、正の領域が

砂岩。)

図 5.6-2 反応速度定数を変動させた検討結果の提示例 2(Xu et al., 2005, Fig. 10: 100,000 年後の砂岩-頁岩系での(a)ドーソナイトおよび(b)アンケライト生成

量)

図 5.6-3 反応速度定数を変動させた検討結果の提示例 3(Xu et al., 2005, Fig. 11:砂岩層 中での CO2鉱物固定量の経時間変化)

図 5.6-4 反応速度定数を変動させた検討結果の提示例 4 (Xu et al., 2005, Fig. 12:砂岩層 中での(a)ドーソナイトおよび(b)アンケライト生成量の経時間変化)

同様に、Liu et al. (2019)の玄武岩での CO₂ 固定のシミュレーションでは、シデライトの沈殿に対して鉄の主要なソースとして鉄カンラン石の溶解速度が重要となることを考慮して、鉄カンラン石の反応表面積を変動させた感度解析が実施されている(図 5.6-5 および図 5.6-6)。図 5.6-5 に示すとおり、当該論文では、初期値(base: 360 cm²/g)、反応

表面積が10%に低下(SSA_0.1base)、反応表面積が500%増加(SSA_5base)の各ケースについて、生成する全炭酸塩鉱物量、孔隙率、および各炭酸塩鉱物の体積分率の経時変化が提示されている。結果として、baseに対する全炭酸塩鉱物量は、SSA_0.1baseで2.75%の減少、SSA_5baseに対して26.64%の増加となったが、これを受けて、鉄カンラン石の反応表面積が360 cm²/gより小さいときは反応表面積の変動の影響がないと結論づけられている。加えて、図5.6-6の(a)、(d)、(e)の比較から、反応表面積がCO₂の移動にほとんど影響しないことも述べられている。

以上の2つのケースは、結果的には反応速度の差が結論に大きく影響しなかったもの の、論文中に感度解析の項が設けられ、その中で詳細な比較検討が行われている。この観 点では、反応速度の不確実性に留意すべきことが明示されている例といえる。しかしなが ら、これら以外の文献では、不確実性には言及しつつその影響が議論されていない、ある いは不確実性そのものに触れていないケースが多く見られた。

図 5.6-5 反応表面積を変動させた検討結果の提示例 1 (Liu et al., 2019, Fig. 11 : a) 生成 する炭酸塩鉱物の累積量、b) 観測点の孔隙率変化、c) カルサイトの体積分率、 d) シデライトの体積分率、e) マグネサイトの体積分率)

図 5.6-6 炭酸塩生成の空間分布の提示例 2(Liu et al., 2019, Fig. 12:a) 洪水玄武岩、b) 混合玄武岩、c) 蛇紋岩化した玄武岩、d) 反応表面積を減らした場合の洪水玄武 岩、e) 反応表面積を増やした場合の洪水玄武岩)

5.6.3 地化学連成シミュレーションの設定法の改善(案)

地化学的数値解析ソフトウェアの概要を整理し、地層水の初期設定と反応速度計算に関わる留意点をとりまとめた。

(1) 地化学的数値解析ソフトウェアの概要

流動一地化学連成計算ソフトウェアは、既存の流動計算ソフトウェアに新たに地化学的 計算モジュールを追加したものと、地化学的計算ソフトウェアに流動計算モジュールを追 加したものとに大別される(表 5.6-3)。TOUGHREACT は前者の一つであり、CO2成分 については、流動計算モジュールで計算した相状態に応じた CO2濃度を地化学的計算モ ジュールに受け渡し、地化学的計算モジュールが流体/岩石反応計算を行い、その結果を 流動計算モジュールにフィードバックする。CO2成分の鉱物固定で生じた孔隙率変化も流 動計算モジュールに引き継ぐことができる。TOUGHREACT の地化学的計算モジュール には熱力学的データベースが搭載されておらず、熱力学的データベースは使用者の責任で 編集するように指示されている。ただし、EQ3/6、PHREEQC、Solveq Chillar 等の代表 的な地化学的計算ソフトウェアに標準搭載されている熱力学的データベースや、

THERMODDEM や SUPCRT 等の単独の熱力学的データベースが活用できるように フォーマットされており、さらに、マニュアルの例題には文献で実際に編集利用された熱 力学的データが提示されている。

Flow(+Geochemical) Simulator		Geochemical (+Flow) Simulator	Thermodynamic Database	Reference	
	←	EQ3/6	data0	Wolery and Jarek (2003)	
	←	PhreeqC	phreeqC	Parkhurst and Appelo (2013)	
	←	Minteq	minteq	Allison et al. (1991)	
T 10 (←	Solveq Chillar	soltherm	Reed and Palandri (2006)	
I ougnReact (having no database)	←		Thermoddem	Blanc et al. (2007)	
(naving no datababby)	← ← ×		SUPCRT	Johnson et al. (1992)	
			Thermochimie	Marty et al. (2015)	
		GWB	Thermo	Bethke (1996)	
	×		CHNOSZ	Dlck (2019)	

表 5.6-3 地化学計算ソフトウェアと熱力学的データベースの例

これに対し地化学的計算ソフトウェアに流動計算モジュールを追加したものでは、ほと んどが溶液単相の流動しか取り扱えない。ただし、Solveq Chillar では気液二相の沸騰状 態も取り扱われる。熱力学的データベースは様々な溶存種と鉱物種を搭載しているが、主 要な利用分野に応じて若干の相違がある(地下水:EQ3/6、PHREEQC、地熱:Solveq Chillar、放射性廃棄物:GWB、Thermochimie、鉱物資源:CHNOSZ)。近年は熱力学 的データベースを地化学的計算ソフトウェア間で相互に融通できるようになりつつある。

熱力学的データベースの多くは、取り扱う元素種を定め、各元素種に対応する溶存化学 種の一つを基本成分とみなし、基本成分の組み合わせによる化学反応式で表現される化学 種を二次成分と定義している。これに対し、個々の化学種の熱力学的データ(ΔG、Δ H、ΔS)を搭載し、利用時に必要な化学反応式の平衡定数を導くものもある(例えば SUPCRT)。化学反応式で表現される化学種は、溶存化学種、鉱物種、ガス種に区分され ている。地化学的数値解析では、通常、熱力学的データベースに搭載されている全化学種 を対象に計算が行われるが、流動計算とカップリングする際には、計算時間のメモリの制 約から、計算対象とする元素種を決め、必要な溶存化学種、鉱物種、ガス種のみを選定す

ることが行われる。以下に元素種、溶存化学種、鉱物種の概要を整理した。

元素種

地層水については一般に、環境因子である温度、pH、Eh、および元素種として Na、 K、Ca、Mg、Al、Si、Fe、Cl、S、C が取り扱われる。このうち Na、K、Ca、Mg と Cl、S、C は、溶存総量を溶存イオン態で表現しトリリニアダイアグラムに描画すること で、水質の分類と特徴の抽出に用いられる。また、Cl、S、C は溶存総量に加えてそれら の安定同位体比と組み合わせて地層水の起源の推定に利用される。地層水と岩石の反応を 検討する際には、岩石の主成分である Al、Si、Fe 等は必須となる。地層水は表層水とは 異なり、地表からの酸素の供給が少ないため地下環境に応じた Eh を呈する。幾つかの元 素種はその Eh に応じた溶存形態で存在する(例えば、Fe は Fe³⁺と Fe²⁺、S は SO4²⁻と HS、C は HCO3⁻ と CH4⁰等)。このような元素種の選定は計算対象とする地化学的事象 に大きく依存する。一例として TOUGHREACT のマニュアル中の CCS に関連する例題に 選定されている元素種を表 5.6-4 に整理した。この例題では地層水に普遍的に認められる 元素種が選定されている。

表 5.6-4 熱力学的データの主要溶存元素とその化学種の例(TherAkin10.dat: Xu et

		complexes				with	with other cations			
element	ion	ОН	CI	SO4	HCO3	Al	Si	ро	lymer	
Na	Na+	NaOH(aq)	NaCl(aq)	NaSO4-	NaHCO3(aq)	NaAlO2(aq)	NaHSiO3(aq)			
					NaCO3-					
к	K+	KOH(ag)	KCI(ag)	KHSO4(ag)		KAIO2(ag)*				
				KSO4-						
Ca	C212	CaOH	CaCh		CallCO2					
Ca	Gatz			CaSO4(aq)						
			CaCl2(aq)		CaCO3(aq)		CaH2SiO4(aq)			
							Ca(H3SiO4)2(aq)			
Mg	Mg+2	MgOH+	MgCI+	MgSO4(aq)	MgHCO3+		MgH3SiO4+	Mg4(OH)4	l +4	
					MgCO3(aq)		MgH2SiO4(aq) Mg(H3SiO4)2(aq)			
Al	Al+3	AIOH+2		AISO4+				AI1304(0	H)24(7+)	
				AI(SO4)2-					5+)	
								AIZ(UT)Z-	F4	
Fe	Fe+3	Fe3(OH)4(5+)	FeCl+2	FeHSO4+2	FeCO3+			Fe2(OH)2	+4	
		Fe2(OH)2+4	FeCl2+	FeSO4+	Fe(CO3)2-*			Fe3(OH)4	(5+)	
		FeOH+2	FeCl4-	Fe(SO4)2-	Fe(CO3)3*			. ,	. ,	
		Fe(OH)2+								
		Fe(OH)3(aq)		Fe(HS)2(aq)*						
		Fe(OH)4-			E 11000			-		
	Fe+2	FeOH+	FeCl+	FeSO4(aq)	FeHCO3+					
		FeO(aq) HEeO2-	FeCi2(aq)		FeCO3(aq)					
Si		SiO2(ag)	1 6014-2					H4(H2SiO	4)4-4	
		H3SiO4-						H6(H2SiO	4)4-2	
		HSiO3-						,	,	
		H2SiO4-2								
element			specie	es (arranged at d	ifferent redox stat	e)		polymer		
CI			CIO4-					-		
			CIO3-					~		
		HCIO2(aq)	<u>CIO2-</u>					-		
		HCIO(aq)	<u>CIO-</u>					-		
<u> </u>	(ovd)	HCI(aq)						8204.2	S206.2	
5	(oxu)		HSO2-	SO4-2				S204-2	5306-2 S406-2	
		SO2(aq)	HSO3-	SO3-2					S506-2	
		002(04)	HS203-	S203-2					00002	
	(red)	H2S(aq)	HS-	S-2	*****	*****		S3-2	S5-2	
	()			S2-2				S4-2		
С	(oxd)	CO2(aq)	HCO3-	CO3-2						
	(red)	CH4(aq)	(exclusion of	organic compone	ents)			-		
н		H2O	H+	OH-				~		
		H2(aq)						_		
0		O2(ag)								

al., 2014)

Note, bold: primary (basic) species, and * added from thermoddem.dat.

2 溶存化学種

熱力学的データベースに搭載の溶存化学種はすべて計算に用いることができるが、予想 される環境条件(例えば、温度、pH、Eh)を考慮して必要な溶存化学種を選定して用い てもよい。表 5.6-4には前述の TOUGHREACT の例題に選定されていた溶存化学種も提 示した。ただし、無機物質のみで有機物質は割愛し、比較のために別の熱力学的データ ベースの溶存化学種を追記した。

これら溶存化学種の出現状況を、①Cl、S、C、②Na、③K、④Ca、⑤Mg、⑥Al、⑦ Si、⑧Feの順に、事例的に図 5.6-6~図 5.6-13の Eh-pH 図と濃度-pH 図に示した。計 算はグラフ化モジュールを搭載している GWB で行い、熱力学的データベースは主に THERMODDEM を用いて、温度は 50°Cで一定とした。濃度-pH 図上に明示していない が、対象とする元素種の濃度が変化すると、関係する溶存化学種の濃度も変化し、元素種 が増えると関係する溶存化学種の濃度が競合的に変化する。結果として、表 5.6・4 のほと んどの溶存化学種が濃度-pH 図上に出現し、地化学的解析に重要であることが示唆され た。なお、溶存ポリマーのデータはここで用いた熱力学的データベースには十分でなかっ たが、 $Al_2(OH)_2^{4+}$ はその他の Al の水酸化物錯体と同様の pH 範囲にピーク濃度を有し、 $Mg_4(OH)_4^{4+}$ は高アルカリ性の pH 領域で高濃度となった。Si の重合体は多数がアルカリ性 の pH 領域に出現した。

図 5.6-7 CI、S、C の卓越する溶存化学種(thermoddem.dat): a) 温度=50℃、CI 活量 =0.5、b) 温度=50℃、SO4 活量=0.5

図 5.6-7 CI、S、C の卓越する溶存化学種(thermoddem.dat) (続き) : c) 温度= 50℃、HCO3 活量=0.5

図 5.6-8 Na の溶存化学種(thermoddem.dat): a) 温度 50℃、Na=500、Cl=500 (mmolal)、b) 温度 50℃、Na=500、SO4=500 (mmolal)

図 5.6-8 Na の溶存化学種(thermoddem.dat)(続き) : c) 温度 50°C、Na=500、 HCO3=500(mmolal)

図 5.6-9 Kの溶存化学種(thermoddem.dat):a) 温度 50°C、K=500、Cl=500 (mmolal)、b) 温度 50°C、K=500、SO4=500 (mmolal)

図 5.6-10 Ca の溶存化学種(thermoddem.dat): a) 温度 50°C、Ca=100、Cl=500 (mmolal)、b) 温度 50°C、Ca=100、SO4=500 (mmolal)

図 5.6-10 Ca の溶存化学種(thermoddem.dat)(続き) : c) 温度 50℃、Ca=100、 HCO3=500(mmolal)

図 5.6-11 Mg の溶存化学種(thermo.com.V8R6+.tdat): a) 温度 50°C、Mg=100、 Cl=500 (mmolal)、b) 温度 50°C、Mg=100、SO4=500 (mmolal)

図 5.6-11 Mgの溶存化学種(thermo.com.V8R6+.tdat)(続き):c) 温度 50°C、Mg= 100、HCO3=500(mmolal)

図 5.6-12 AI の溶存化学種(thermoddem.dat with thermo.dat): a) 温度 50℃、AI=100 (mmolal)、b) 温度 50℃、AI=100、Na=500、K=500 (mmolal)

図 5.6-12 AI の溶存化学種(thermoddem.dat with thermo.dat)(続き):c) 温度 50°C、 AI=100、SO4=500(mmolal)

図 5.6-13 Si の溶存化学種(thermoddem.dat、thermo.com.V8R6.tdat with EQ3/6 data0.dat): a) 温度 50°C、Si=100(mmolal)(mmolal)、b) 温度 50°C、Si =100、Na=500、Ca=100、Mg=100(mmolal)

図 5.6-14 Fe の卓越する溶存化学種(thermoddem.dat、thermo.tdat): a) 温度 50℃、 Fe 活量=0.1、Cl 活量=0.5、b) 温度 50℃、Fe 活量=0.1、SO4 活量=0.5

Fe (100) - CI (500) - H2O

図 5.6-14 Fe の卓越する溶存化学種(thermoddem.dat、thermo.tdat)(続き) : c) 温度 50°C、Fe 活量=0.1、HCO3 活量=0.5、d) 温度 50°C、Fe=100、Cl=500 (mmolal)

図 5.6-14 Fe の卓越する溶存化学種(thermoddem.dat、thermo.tdat)(続き):e) 温度 50°C、Fe=100、SO4=500(mmolal)、O2(aq)なし、f) 温度 50°C、Fe=100、 HCO3=500(mmolal)

図 5.6-14 Fe の卓越する溶存化学種(thermoddem.dat、thermo.tdat)(続き):g) 温度 50°C、Fe=100、SO4=500(mmolal)、log fO2(g)=-70

③ 鉱物種

帯水層は堆積岩からなることが多く、代表的な岩相は泥岩、砂岩、礫岩、凝灰岩であ る。これらを構成する物質は主に後背地から供給された鉱物片、岩石片、火山性砕屑物 と、粒間を充填する粘土鉱物や自生鉱物である。構成物質の詳細は顕微鏡観察や微小領域 の化学分析で鑑定される。地化学的数値解析では、同定された各鉱物は熱力学的データ ベースに搭載されている鉱物種で近似される。熱力学的データベースには多数の鉱物種が 搭載されているが、速度論的パラメータについては別のデータベースや文献に依拠する必 要がある。溶解速度定数が報告されている鉱物種を表 5.6-5 に整理した。これらを利用す る際には、化学組成が妥当であるか、固溶体に適用できるか、結晶度が同じであるかに留 意が必要であり、また、岩石中のガラス状物質、有機物質、岩石片をどのように取り扱う かについても考慮する必要がある。

表 5.6-5	溶解速度定数が報告されている鉱物種の例
20.0.0	

Group	Name	Reference	Group	Name	Reference
Olivine	Forsterite	1	Clay	Mica Group	1
	Fayalite	1		Biotite	1
Pyroxene	Augite	1	-	Muscovite	1
	Bronzite	1		illite	2
	Diopside	1		Glauconite	1
	Enstatite	1		Paragonite	1
	Jadeite	1		Phlogopite	1
	Spodumene	1		Pyropyllite	1
	Wollastonite	1		Kaolinite Group	1
Amphibole	Anthopyllite	1	-	Kaolinite	1
	Glaucophane	1		Smectite Group	1
	Hornblende	1		Montmorillonite	1
	Riebeckite	1		Smectite	1
	Tremolite	1		Miscellaneous Group	1
Feldspar	Plagioclase	1	-	Lizardite	1
	Albite	1		Chrysotite	1
	Oligoclase	1		Chlorite	1
	Andesine	1		Ripidolite	2
	Labradonite	1		Talc	1
	Bytownite	1	Hydroxide	Brucite	1
	Anorthite	1		Gibbsite	1
	K-Feldspar	1	-	Diaspore	1
	Microcline	2		Portlandite	2
	Feldspathoid	1	Carbonate	Calcite	1
	Nepheline	1		Dawsonite	1
	Leucite	1		Dolomite	1
Silica	Quartz	1	-	Magnesite	1
	Amorphous Silica	1		Siderite	1
	α -Cristobalite	1	Sulfate	Anglesite	1
	β-Cristobalite	1		Anhydrite	1
Garnet	Almandine	1	-	Gypsum	1
	Grossular	1		Barite	1
	Andradite	1		Celestite	1
Epidote	Epidote	1	Sulfide	Pyrite	1
	Zoisite	1		Pyrrhotite	1
Others	Kyanite	1	-	As2S3	1
	Staurolite	1	Phospate	Hydroxyapatite	1
	Cordierite	1		Fluorapatite	1
	Tourmaline	1	Halide	Halite	1
Oxide	Goethite	1	-	Fluorite	1
	Hematite	1	Others	C-S-H	2
	Magnetite	1			
	ilmenite	1			
	Uranite	1			

Refernce: 1. Palandri and Kharaka (2004), and 2. Marty et al. (2015) for Thermo-Chimie database.

(2) 初期地層水組成の推定

地層水組成の化学平衡論的な推定方法と反応速度論的な推定方法の特徴について、以下に整理した。

① 化学平衡論的な推定

地層水の化学組成が得られている場合、地化学的数値解析手法を用いて、地層水の様々な鉱物種に対する飽和度を求めることができる。例えば、帯水層の岩石中に斜長石の鉱物

片が残存し、岩石の孔隙中にカルサイトが自生している場合、斜長石から溶出した Ca^{2+が} 地層水中の炭酸成分と結びついて、開口部にカルサイトを沈殿したと推定される。地層水 について斜長石とカルサイトに対する飽和度を計算すると、①斜長石に一致する場合、② カルサイトに一致する場合、③両者の中間的な場合、のいずれかが期待される。①の場合 には地層水の Ca 濃度が斜長石の溶解に、②の場合にはカルサイトの沈殿に、律速されて おり、③の場合には過渡的状態にあるか、非平衡状態にあると推定される。非平衡状態に ついては、例えば粘土鉱物の生成やイオン交換等、異なる鉱物種の寄与等を考える必要が 生じる。また、二成分系の活量図(例えば(Ca²⁺)/(H⁺)²-(Na⁺)/(H⁺)の活量図等)には鉱 物種の安定領域が描画でき、地層水の化学組成と比較することで、鉱物種と化学平衡状態 にあるか否かを推定することもできる。

これに対して、地層水の化学組成が得られていない場合、地層水の元素種を設定し、各 元素種に鉱物種を一つ想定し、温度、pH、Eh等の環境因子を定めて地化学的計算を行う ことで、地層水の化学組成を推定することができる。例えば、帯水層にカルサイトが存在 する場合、温度、圧力(ここでは炭酸ガス分圧)、pHを環境因子として数値設定し、カ ルサイトの溶解度を計算することで、地層水の Ca²⁺と CO₃²濃度が求められる。帯水層に カルサイトと共に石膏も認められるならば、石膏の溶解度とこの Ca²⁺濃度とを基に SO4²⁻ 濃度が計算される。同様にして各元素種について鉱物種を反映した溶存濃度が算出され る。このような化学平衡論的推定は、地層水と鉱物種が化学平衡状態にあることが前提で あり、妥当な鉱物種が選択されている必要がある。地層水が鉱物種と化学平衡状態にない 場合には、後述の反応速度論的推定が必要である。

地層水の化学組成が不確かな場合がある。例えば、採取時や採取後に溶存ガス成分

(CO₂、H₂S等)が分離や脱気して流体性状が変化する場合や、採取試料の温度、pH、 Ehを維持できず、Feの沈殿やSの酸化や沈殿を生じる場合である。また、高塩濃度の地 層水ではAlやSiの分析時に干渉による分析精度の低下や、元々の溶存Al濃度が化学分析 の検出限界に近く、分析に困難さを伴う場合もある。このような不確定要素の大きい溶存 成分(Al³⁺、Fe²⁺、H₄SiO₄⁰、HS⁻等)については、溶液と鉱物との化学平衡状態を前提と できる場合には、それらの変化を考慮した補正法(例えばGeo-T ソフトウェア: Spycher and Finsterle, 2016)を用いることもできる。ただし、計算結果の確からしさは別途検証 する必要がある。

反応速度論的な推定

帯水層では地層水と岩石とが化学平衡状態にあるとは限らない。例えば、帯水層にシリ

カ鉱物として非晶質シリカ、カルセドニー、石英が共存し、どの鉱物も地層水と化学平衡 状態にない場合がある。Al 鉱物でも同様に、岩石中に多数のAl 鉱物(例えば水酸化物や 粘土鉱物)が存在するが、Al 濃度を説明できない場合がある。このような課題に対し、反 応速度論的手法は一つの溶存成分に複数の鉱物種を対応させて非平衡状態や過渡的状態を 表現することで対処する。それには、後述のように、化学平衡論的な推定に比較してより 多くの反応速度論的パラメータの設定を必要とする。

帯水層の間隙中での、一次鉱物の溶解に伴う二次鉱物の生成と、これに伴う間隙水の濃 度変化の模式図を図 5.6-15 に示した。一次鉱物の溶解速度が二次鉱物の沈殿速度より大き い場合には間隙水中の当該溶存成分の濃度が上昇し続け、同じ速度の場合には非平衡定常 状態で濃度変化せず、小さい場合には化学平衡状態に達する。これらの反応が継続して二 次鉱物の表面積が大きくなるにつれて、いずれの場合にも間隙水は化学平衡状態へ移行し ていく。

CCSの地化学計算では、地層水の初期設定に、実際に分析で得られた化学分析値あるい はNaCl溶液と岩石とをある程度に反応させた溶液組成が用いられている。前者の場合、 地層水とほぼ化学平衡状態にある鉱物種を初期設定しているならば、地層水と岩石との反 応を開始しても、水質が余り大きく変化することはない。しかしながら、一次鉱物に斜長 石や輝石等の高温安定な鉱物種を含める必要があり、それらの溶解速度を大きく設定した 場合には、地層水は当該溶存成分の濃度が増加し続ける(図 5.6-15 の(1))。このため、 地層水のそれら鉱物種に対する飽和度が準安定状態から化学平衡状態に落ち着くように、 一次鉱物の溶解速度と二次鉱物の沈殿速度を調整する必要がある(図 5.6-15 の(2)および (3))。これに対して、NaCl溶液と岩石とをある程度に反応させた溶液組成を地層水の初 期設定に用いる場合、濃度変化が比較的安定する計算後期の水質を用いることができる。 ただし、鉱物量が極端に減少しないように、一次鉱物の溶解速度を適当に調整する必要が ある。地層水の水質の初期設定方法としては、水質がより早く準安定状態から化学平衡状 態近傍に落ち着く方法が良いと考えられる。落ち着き具合は、地層水の化学分析値、計算 過程の水質、得られた水質をトリリニアダイアグラム等で比較して判断してもよい。

図 5.6-15 鉱物の反応と溶液濃度の相関イメージ

(3) 速度論計算

鉱物の反応速度は一般に、反応速度定数項、反応表面積項、温度依存項、濃度依存項の 積で表現される。このうち温度依存項にはアレニウスの式が、濃度依存項には様々な理論 式や経験式が適用され、後者はさらに環境因子(pHやガス分圧等)に依存する項と当該 鉱物種に対する飽和度項に細分される。溶解と沈殿は反応速度定数項の正負で区分され る。反応速度定数は基本的に実験を通じて得られるが、実験は化学平衡状態からかけ離れ た条件下で得られている場合が多く、化学平衡状態に近い条件下への適用には十分な配慮 が必要である。また、鉱物種によっては溶解と沈殿の両方の反応速度定数が報告されてい ない場合もあり、しばしばどちらかで近似されているが、これについても妥当性に留意す る必要がある。反応速度パラメータのうち設定範囲が最も広いのは反応表面積項である。 一般に鉱物の表面積は粒子径を基に算出される幾何学的表面積とガス吸着量から推定され る BET 表面積とがある。これら表面積は鉱物表面の活性状態にある反応表面積とは異な るが、相関性は有すると考えられるため、何らかの係数をもって実効的な値に換算して用 いる必要がある。これらに加えて、地化学的計算では各鉱物の量比を設定する必要があ る。一般に岩石中の鉱物量はポイントカウンティング法、面的モード測定、X線 CT 法、 全岩化学分析を基にしたノルム計算法により求められている。

地化学的数値解析はこれら多くのパラメータの設定を基に初めて実行することができ る。これらパラメータの初期設定値の計算結果への影響は、例えば鉱物種を一つずつ加え て確認しながら進めるのが良いと考えられる。単純な系では反応速度を一桁変化させると 事象の進行時間が一桁変化する。そのため、上述の反応速度パラメータは地質学的に妥当 と考えられる範囲において十分な思慮を以って設定する必要がある。

5.6.4 CCSにおける流動-地化学連成シミュレーションのあり方に関する提言

ここでは、CCSにおける流動-地化学連成シミュレーションに関して、有識者からの意 見を集約し、意義、結果の提示、結果の解釈、および社会への影響の観点から、あり方に 関する提言としてまとめた。

(1) 意義

一般に CCS の安全性評価は、CO₂ 圧入直後から生じる物理プロセスに主眼が置かれて いる一方で、地化学プロセスについては時間スケールが数百年から数千年あるいは数万年 と長期にわたることもあり、その優先度は必ずしも高く位置付けられていない。しかしな がら、圧入した CO₂ の長期にわたる挙動を認識することは、科学的理解の促進のためのみ ならず、社会に対する説明責任の観点からも、実施者としての責務であると考えられる。

(2) 結果の提示

流動-地化学連成シミュレーションは過去から未来に至る現象を任意に再現できる点 で、きわめて有用なツールである。しかしながら、その結果は必ずしも絶対ではなく、あ くまでも一つの可能性に過ぎない点を明確にしておく必要がある。

流動-地化学連成シミュレーションの結果は、パラメータの設定値次第で非常に大きな 変動を生じることを明示すべきである。特に反応表面積の不確実性は古くから地球化学の 大きな課題となっており、確証のない段階での反応速度の算出については慎重な取り扱い が必要である。

(3) 結果の解釈

CCS の地化学シミュレーションでは、IPCC (2005)のトラップメカニズムの図に提示さ れるように、しばしば溶解トラップや鉱物トラップが進行することで CO₂の流動性が低減 し、CO₂地中貯留の安全性が高まることが示されている。CO₂の流動性が低減することに より、CO₂圧入後モニタリングを早期に終了できることは地化学トラップの有用性の一つ になり得る。しかしながら、裏返せばこれらの地化学トラップが機能しなければ CO₂地中 貯留は安全ではないとの誤解に繋がりかねない。例えば、1990 年代後半より順調に多量の CO₂が貯留されていると想定されるノルウェー・スライプナープロジェクトは、超臨界状 態で CO₂が貯蔵されていると考えられており、少なくとも現時点で鉱物トラップの大幅な 進行は報告されていないにも関わらず、CCSの成功例の筆頭として周知されている。した がって、研究者はこの点を理解した上で、安全な CO2の貯蔵形態は複数のトラップメカニ ズムがあることに留意する必要がある。このように地化学トラップと安全性の関係につい ての誤解を避けるため説明には十分に注意する必要がある。

(4) 社会への影響

研究者心理として、地化学を専門とする研究者ほど、地化学影響の大きさを主張する傾向が強くなってしまうのは否めない。一方で、CCSの分野では地化学への理解が必ずしも 浸透しているとは言えず、そのような主張が十分な議論なしに鵜呑みにされてしまう懸念 がある。したがって、研究者は、どこまでが確実でどこからが不確実なのかを明示した上 で、責任を持って結果を提示することが重要である。

CCS のように社会に直結する課題は、常に賛否それぞれの立場の人が存在するため、結果が悪用され得る点を認識しておく必要がある。これについては、反対派の材料となることもあるが、賛成派が過大に安全性を主張するための材料とすることも問題である。したがって、数値や結論が独り歩きする懸念を踏まえた上で、常に設定条件や仮定とセットの形で結果を提示することが重要である。

5.6.5 まとめ

安全かつ普遍的な CCS の実施のためのシミュレーション作業の効率化と不確実性低減 の可能性を目的として、①流動-地化学連成シミュレーションの設定法の現状の調査、② 地化学連成シミュレーションの設定法の改善(案)、③CCS における流動-地化学連成シ ミュレーションのあり方に関する提言からなる動向調査を行った。

(1) 「流動-地化学連成シミュレーションの設定法の現状の調査」

現行の CCS の長期挙動評価においては、流動-地化学連成シミュレータである TOUGHREACT が最も一般的に適用されていることを踏まえ、CCS を対象とした TOUGHREACT の設定法の現状について、文献情報に基づいた調査を行った。この中 で、鉱物組成および地層水組成の初期状態設定および速度論計算の方法について、現状の 考え方と取り扱い方を整理した。また、流動-地化学連成シミュレーションでは、特に反 応速度算出時に必要となる反応表面積の不確実性が高いことから、どのように不確実性が 取り扱われているのかを調べるとともに、その提示の方法について事例を踏まえた検討を 行った。なお、TOUGHREACT の使用においては、過去の事例(特に当該シミュレータ の作成者である Xu 氏の手法を踏襲することが一般的となっているが、例えば設定方法に ついて一般化された手法は見当たらず、また反応速度関係のパラメータ等を研究者独自に 適用する試みも行われており、依然として試行錯誤が続いている状況にある。すなわち不 確実性の改善に繋がる設定法や作業手順は確認できなかったため、これまでと同じような 手法でシミュレーションを継続すべきか否か検討する必要がある。

(2) 「流動-地化学連成シミュレーションの設定法の推奨案」

以上の調査結果を踏まえて、当該シミュレーションの設定法について現状で最も適切と 考えられる推奨案を検討した。具体的には、地化学的数値解析ソフトウェアの概要を整理 した上で、化学平衡論および反応速度論、それぞれの観点からの地層水の推定と、反応速 度計算に関して、実際にシミュレーションを行う上での留意点をとりまとめた。特に文献 からの情報が得られなかった溶存化学種の設定については、主要元素ごとにその出現状況 を計算し、Eh-pH 図および濃度-pH 図として例示した。対象とする系について、あら かじめ pH や Eh、濃度等の範囲が推定できる場合は、これらの図を適用することで必要な 溶存化学種の絞り込みが可能となる。したがって、計算時間の短縮を含めた効率化の観点 で、今回提示した情報はきわめて有用であると考えられる。ただし、効率化は限定的で大 幅な時間短縮や効率化に繋がる設定方法や作業手順は確認できなかった。

(3) 「CCSにおける流動-地化学連成シミュレーションのあり方に関する提言」

CCS における流動-地化学連成シミュレーションに関して、有識者からの意見を集約 し、意義、結果の提示、結果の解釈、および社会への影響の観点から、そのあり方に関す る提言としてまとめた。ここでは、時間スケールの長い地化学プロセスを理解する上で流 動-地化学連成シミュレーションはきわめて有用なツールとなるが、一方で、地化学プロ セスは時間スケールが長いことに起因して検証できないからこそ、シミュレーション結果 の取り扱い方には慎重になるべきである。

したがって、CCSのように社会的に影響の大きい課題に対する不確実性の大きい地化学 連成シミュレーションの結果の取り扱いについては、前提条件を明示した上で、変動範囲 を示して不確実性含めた結果を説明すべきと考える。また、一方で、わずかに条件が違う シミュレーションを頻繁に実施して結果を変更することは無用な混乱を招く可能性がある ため、データの取り扱いに留意し、影響の大きさを検討した上で慎重に更新すべきであ る。

5.6.6 今後の課題

今回の動向調査結果により、作業の効率化は図れる可能性はあるものの効率化は限定的 で大幅な時間短縮や効率化に繋がる設定方法や作業手順は確認できなかった。また、地化 学反応の不確実性は最新の研究結果でも大きくは改善されていないことが判明した。

一方、苫小牧 CCS の圧入実績からは地化学反応が生じている兆候やその影響は見られ ておらず、また、これまでのシミュレーション結果から地化学反応が開始されるのは 100 年から 1,000 年単位の時間経過が必要な可能性があり、シミュレーション結果の実証は困 難と考えられる。

以上のことから、流動シミュレーションの更新毎に地化学シミュレーションを更新して もシミュレーション結果に大きな改善は見込めず、実施する意味はあまり無いと考えらえ るため、流動-地化学連成シミュレーションの実施は将来の圧入再開等の貯留層の状況が 変化する場合や定期的に動向調査を実施した上で技術的に必要とされる段階で、不確実性 が改善される等大きな進展が見込まれる場合等に実施する。

【引用文献】

- Andre, L., Audigane, P., Azaroual, M., Menjoz, A. (2007) Numerical modeling of fluidrock chemical interactions at the supercritical CO₂ - liquid interface during CO₂ injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France), Energy Conversion and Management 48, 1782-1797.
- Allison, J. D., Brown, D. S., Nova-Gradac, K. J. (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0 user's manual, U. S. Environmental Protection Agency.
- Beni, A. N., Kühn, M., Meyer, R., Clauser, C. (2012) Numerical modeling of a potential geological CO₂ sequestration site at Minden (Germany), Environ Model Assess 17, 337-351.
- Berger, P. M., Yoksoulian, L., Freiburg, J. T., Butler, S. K., Roy, W. R. (2019) Carbon sequestration at the Illinois Basin-Decatur Project: experimental results and geochemical simulations of storage, Environmental Earth Sciences 78:646.
- Berner, R. A. (1971) Principles of Chemical Sedimentology, McGraw-Hill, Inc., New York, 240 pp.
- Bethke, C. M. (1996) Geochemical Reaction Modeling, Concepts and Applications, Oxford. University Press, New York.
- Blanc P., Lassin A., Piantone P. (2007) THERMODDEM a database devoted to waste minerals. BRGM.
- Cantucci, B., Montegrossi, G., Buttinelli, M., Vaselli, O., Scrocca, D., Quattrocchi, F.

(2015) Geochemical barriers in CO₂ capture and storage feasibility studies, Transp. Porous Med. 106, 107-143.

- Choi, B.-Y., Shinn, Y.-J., Park, Y.-C., Parka, J., Kwon, Y.-K., Kim, K.-Y. (2017) Simulation of CO₂ injection in a small-scale pilot site in the Pohang Basin, Korea: Effect of dissolution rate of chlorite on mineral trapping, International Journal of Greenhouse Gas Control 59, 1-12.
- Dalkhaa, C., Shevalier, M., Nightingale, M., Mayer, B. (2013) 2-D reactive transport modeling of the fate of CO₂ injected into a saline aquifer in the Wabamun Lake Area, Alberta, Canada, Applied Geochemistry 38, 10-23.
- Dick, J. M. (2019) CHNOSZ: Thermodynamic calculations and diagrams for geochemistry, Front. Earth Sci. (https://doi.org/10.3389/feart.2019.00180)
- Fang, Q., Li, Y., Peng, G., Cheng, P., Lv, J. (2016) Effects of feldspar and salinity on the mineral sequestration capacity of CO₂ in high-salinity aquifers, Environ Earth Sci. 75:1265.
- Garrels, R. M., Thompson, M. E. (1962) A chemical model for sea water at 25°C and one atmosphere total pressure, Am. J. Sci. 260, 57-66.
- Gherardi, F., Xu, T., Pruess, K. (2007) Numerical modeling of self-limiting and selfenhancing caprock alteration induced by CO₂ storage in a depleted gas reservoir, Chemical Geology 244, 103-129.
- Hsieh, P.-S., Tien, N.-C., Lin, C.-K., Lin, W., Lu, H.-Y. (2017) A multi-sequestration concept of CO₂ geological storage: Shale-Sandstone-Basalt system in Northwestern Taiwan, International Journal of Greenhouse Gas Control 64, 137-151.
- IPCC (2005) Underground geological storage (Coordinating lead authors, S. Benson and P. Cook). In IPCC Special Report on Carbon Dioxide Capture and Storage (eds. B. Metz, O. Davidson, H. Coninck, M. Loos and L. Meyer). Cambridge University Press, 195-276.
- Johnson, J. M., Oelkers, E. H., Helgeson, H. C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C, Computer & Geosciences 18, 899-947.
- Kawata, Y., Xue, Z., Mito, S., Nakajima, T. (2014) A history matching study of Nagaoka site for geochemical model calibration in reactive transport model: Using concentration

changes of chemical species from post-injection water sampling data, Energy Procedia 63, 3568 - 3575.

- Lei, H., Li, J., Li, X., Jiang, Z. (2016) Numerical modeling of co-injection of N₂ and O₂ with CO₂ into aquifers at the Tongliao CCS site, International Journal of Greenhouse Gas Control 54, 228-241.
- Liu, H., Hou, Z., Were, P., Gou, Y., Xiong, L., Sun, X. (2015) Modelling CO₂-brine-rock interactions in the Upper Paleozoic formations of Ordos Basin used for CO₂ sequestration, Environ Earth Sci., 73: 2205-2222.
- Liu, D., Agarwal, R., Li, Y., Yang, S. (2019) Reactive transport modeling of mineral carbonation in unaltered and altered basalts during CO₂ sequestration, International Journal of Greenhouse Gas Control 85, 109-120.
- Lucia, M. De, Kempka, T., Kühn, M. (2015) A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO₂ storage systems, Geosci. Model Dev., 8, 279-294.
- Marty, N., Claret, F., Lassin, A., Tremosa, J., Blanc, P., Madé, B., Giffaut, E., Cochepin,
 B., Tournassat, C. (2015) A database of dissolution and precipitation rates for clay-rocks
 minerals, Applied Geochemistry 55, 108-118.
- Mito, S., Xue, Z., Sato, T. (2013) Effect of formation water composition on predicting CO₂ behavior: A case study at the Nagaoka post-injection monitoring site, Applied Geochemistry 30, 33-40.
- Okuyama, Y., Todaka, N., Sasaki, M., Ajima, S., Akasaka, C. (2013) Reactive transport simulation study of geochemical CO₂ trapping on the Tokyo Bay model - With focus on the behavior of dawsonite, Applied Geochemistry 30, 57-66.
- Palandri, J. L., Kharaka, Y. K. (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, U.S. Geological Survey, Open file report 2004-1068.
- Parkhurst, D. L., Appelo, C. A. J. (2013) Description of Input and examples for PHREEQC Version 3 - A computer program for speciation, batch-reaction, onedimensional transport, and inverse geochemical calculations, U. S. Geological Survey.
- Reed, M. H., Palandri J. (2006) SOLTHERM.H06, a database of equilibrium constants for minerals and aqueous species, (Available from the authors, University of Oregon, Eugene, Oregon)
- Shevalier, M., Nightingale, M., Mayer, B., Hutcheon, I., (2011) TOUGHREACT modeling of the fate of CO₂ injected into a H2S containing saline aquifer: the example of the Wabamum Area Sequestration Project (WASP), Energy Procedia 4, 4403-4410.
- Sonnenthal, E. L., Spycher, N. (2001) Drift-Scale coupled processes (DST and THC seepage) models, AMR N0120/U0110 Rev.01, Yucca Mountain Project, Lawrence Berkeley National Laboratory, Berkeley, California.
- Spycher, N., Finsterle, S. (2016) iGeoT v1.0: Automatic parameter estimation for multicomponent geothermometry user 's guide. Lawrence Berkley National Laboratory. LBNL-1005841.
- Tambach, T. J., Koenen, M., Wasch, L. J., van Bergen, F. (2015) Geochemical evaluation of CO₂ injection and containment in a depleted gas field, International Journal of Greenhouse Gas Control 32, 61-80.
- Wang, Q., Miao, X., Wang, Y., Gan, M., Aftab, S. M., Li, X., Zhang, L., Wang, Z. (2020) Simulation of uranium mobilization potential in a deep aquifer under geological carbon storage conditions, Applied Geochemistry 118, 104620.
- Wolery, T. W., Jarek, R. L. (2003) Software user's manual EQ3/6, Ver 8.0. U. S. Department of Energy.
- Wolf, J. L., Niemi, A., Bensabat, J., Rebscher, D. (2016) Benefits and restrictions of 2D reactive transport simulations of CO₂ and SO₂ co-injection into a saline aquifer using TOUGHREACTV3.0-OMP, International Journal of Greenhouse Gas Control 54, 610-626.
- Xu, T., Pruess, K. (1998) Coupled modeling of non-isothermal multiphase flow, solute transport and reactive chemistry in porous and fractured media: 1. Model development and validation. Lawrence Berkeley National Laboratory Report LBNL-42050, Berkeley, California.
- Xu, T., Pruess, K. (2001) On fluid flow and mineral alteration in fractured caprock of magmatic hydrothermal systems, J. Geophys. Res. 106, 2121-2138.
- Xu, T., Apps, J. A., Pruess, K. (2005) Mineral sequestration of carbon dioxide in a sandstone-shale system, Chemical Geology 217, 295-318.
- Xu, T., Sonnenthal, E., Spycher, N., Zheng, l. (2014) TOUGHREACT V3.0-OMP Sample Problems, Lawrence Berkeley National Laboratory.
- Zhang, S., DePaolo, D. J., Voltolini, M., Kneafsey, T. (2015) CO₂ mineralization in

volcanogenic sandstones: geochemical characterization of the Etchegoin formation, San Joaquin Basin, Greenhouse Gases: Science and Technology 5, 622-644.

- Zhang, X., Li, Q., Zheng, L., Li, X., Xu, L. (2020) Numerical simulation and feasibility assessment of acid gas injection in a carbonate formation of the Tarim Basin, China, Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 75, 28.
- Zhu, J., Parris, T. M., Bowersox, J. R., Harris, D. C. (2013) Modeling CO₂-brine-rock interactions in the Knox Group: Implications of a deep carbon storage field test in western Kentucky, Applied Geochemistry 37, 29-42.